ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.03657
  4. Cited By
Neural SDEs as Infinite-Dimensional GANs
v1v2 (latest)

Neural SDEs as Infinite-Dimensional GANs

International Conference on Machine Learning (ICML), 2021
6 February 2021
Patrick Kidger
James Foster
Xuechen Li
Harald Oberhauser
Terry Lyons
    DiffM
ArXiv (abs)PDFHTML

Papers citing "Neural SDEs as Infinite-Dimensional GANs"

17 / 117 papers shown
Generative Adversarial Neural Operators
Generative Adversarial Neural Operators
Md Ashiqur Rahman
Manuel A. Florez
Anima Anandkumar
Zachary E. Ross
Kamyar Azizzadenesheli
GAN
322
50
0
06 May 2022
Neural Lagrangian Schrödinger Bridge: Diffusion Modeling for
  Population Dynamics
Neural Lagrangian Schrödinger Bridge: Diffusion Modeling for Population DynamicsInternational Conference on Learning Representations (ICLR), 2022
Takeshi Koshizuka
Issei Sato
340
7
0
11 Apr 2022
Designing Universal Causal Deep Learning Models: The Geometric
  (Hyper)Transformer
Designing Universal Causal Deep Learning Models: The Geometric (Hyper)TransformerMathematical Finance (Math. Finance), 2022
Beatrice Acciaio
Anastasis Kratsios
G. Pammer
OOD
439
30
0
31 Jan 2022
Fractional SDE-Net: Generation of Time Series Data with Long-term Memory
Fractional SDE-Net: Generation of Time Series Data with Long-term MemoryInternational Conference on Data Science and Advanced Analytics (DSAA), 2022
Kunihiko Miyoshi
Kei Nakagawa
AI4TS
196
11
0
16 Jan 2022
Characteristic Neural Ordinary Differential Equations
Characteristic Neural Ordinary Differential EquationsInternational Conference on Learning Representations (ICLR), 2021
Xingzi Xu
Ali Hasan
Khalil Elkhalil
Jie Ding
Vahid Tarokh
BDL
388
3
0
25 Nov 2021
Modeling Irregular Time Series with Continuous Recurrent Units
Modeling Irregular Time Series with Continuous Recurrent UnitsInternational Conference on Machine Learning (ICML), 2021
Mona Schirmer
Mazin Eltayeb
Stefan Lessmann
Maja R. Rudolph
BDLAI4TS
337
121
0
22 Nov 2021
Proper Scoring Rules, Gradients, Divergences, and Entropies for Paths
  and Time Series
Proper Scoring Rules, Gradients, Divergences, and Entropies for Paths and Time SeriesBayesian Analysis (BA), 2021
Patric Bonnier
Harald Oberhauser
AI4TS
215
5
0
11 Nov 2021
Scalable Inference in SDEs by Direct Matching of the
  Fokker-Planck-Kolmogorov Equation
Scalable Inference in SDEs by Direct Matching of the Fokker-Planck-Kolmogorov EquationNeural Information Processing Systems (NeurIPS), 2021
Arno Solin
Ella Tamir
Prakhar Verma
161
22
0
29 Oct 2021
Neural Stochastic PDEs: Resolution-Invariant Learning of Continuous
  Spatiotemporal Dynamics
Neural Stochastic PDEs: Resolution-Invariant Learning of Continuous Spatiotemporal Dynamics
C. Salvi
M. Lemercier
A. Gerasimovičs
AI4CE
481
55
0
19 Oct 2021
Robust and Scalable SDE Learning: A Functional Perspective
Robust and Scalable SDE Learning: A Functional PerspectiveInternational Conference on Learning Representations (ICLR), 2021
Scott A. Cameron
Tyron Cameron
Arnu Pretorius
Stephen J. Roberts
98
2
0
11 Oct 2021
Physics-Augmented Learning: A New Paradigm Beyond Physics-Informed
  Learning
Physics-Augmented Learning: A New Paradigm Beyond Physics-Informed Learning
Ziming Liu
Yunyue Chen
Yuanqi Du
Max Tegmark
PINNAI4CE
172
23
0
28 Sep 2021
Quantum Quantile Mechanics: Solving Stochastic Differential Equations
  for Generating Time-Series
Quantum Quantile Mechanics: Solving Stochastic Differential Equations for Generating Time-SeriesAdvanced Quantum Technologies (AQT), 2021
Annie E. Paine
V. Elfving
Oleksandr Kyriienko
254
28
0
06 Aug 2021
Learning effective stochastic differential equations from microscopic
  simulations: linking stochastic numerics to deep learning
Learning effective stochastic differential equations from microscopic simulations: linking stochastic numerics to deep learningChaos (Chaos), 2021
Felix Dietrich
Alexei Makeev
George A. Kevrekidis
N. Evangelou
Tom S. Bertalan
Sebastian Reich
Ioannis G. Kevrekidis
DiffM
296
54
0
10 Jun 2021
Efficient and Accurate Gradients for Neural SDEs
Efficient and Accurate Gradients for Neural SDEsNeural Information Processing Systems (NeurIPS), 2021
Patrick Kidger
James Foster
Xuechen Li
Terry Lyons
DiffM
427
84
0
27 May 2021
Neural Options Pricing
Neural Options Pricing
Timothy C DeLise
103
2
0
27 May 2021
Monte Carlo Simulation of SDEs using GANs
Monte Carlo Simulation of SDEs using GANsJapan journal of industrial and applied mathematics (JJIAM), 2021
Jorino van Rhijn
C. Oosterlee
L. Grzelak
Shuaiqiang Liu
GANAI4TS
180
9
0
03 Apr 2021
Conditional Loss and Deep Euler Scheme for Time Series Generation
Conditional Loss and Deep Euler Scheme for Time Series GenerationAAAI Conference on Artificial Intelligence (AAAI), 2021
Carl Remlinger
Joseph Mikael
Romuald Elie
DiffM
320
15
0
10 Feb 2021
Previous
123
Page 3 of 3