ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.04144
  4. Cited By
Switching Variational Auto-Encoders for Noise-Agnostic Audio-visual
  Speech Enhancement

Switching Variational Auto-Encoders for Noise-Agnostic Audio-visual Speech Enhancement

8 February 2021
M. Sadeghi
Xavier Alameda-Pineda
ArXiv (abs)PDFHTML

Papers citing "Switching Variational Auto-Encoders for Noise-Agnostic Audio-visual Speech Enhancement"

4 / 4 papers shown
Title
ImagineNET: Target Speaker Extraction with Intermittent Visual Cue
  through Embedding Inpainting
ImagineNET: Target Speaker Extraction with Intermittent Visual Cue through Embedding Inpainting
Zexu Pan
Wupeng Wang
Marvin Borsdorf
Haizhou Li
88
12
0
31 Oct 2022
Unsupervised Speech Enhancement using Dynamical Variational
  Auto-Encoders
Unsupervised Speech Enhancement using Dynamical Variational Auto-Encoders
Xiaoyu Bie
Simon Leglaive
Xavier Alameda-Pineda
Laurent Girin
DiffM
101
55
0
23 Jun 2021
Variational Structured Attention Networks for Deep Visual Representation
  Learning
Variational Structured Attention Networks for Deep Visual Representation Learning
Guanglei Yang
Paolo Rota
Xavier Alameda-Pineda
Dan Xu
M. Ding
Elisa Ricci
3DPC
59
4
0
05 Mar 2021
Mixture of Inference Networks for VAE-based Audio-visual Speech
  Enhancement
Mixture of Inference Networks for VAE-based Audio-visual Speech Enhancement
M. Sadeghi
Xavier Alameda-Pineda
79
21
0
23 Dec 2019
1