Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2102.04150
Cited By
Exploiting epistemic uncertainty of the deep learning models to generate adversarial samples
8 February 2021
Ömer Faruk Tuna
Ferhat Ozgur Catak
M. T. Eskil
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Exploiting epistemic uncertainty of the deep learning models to generate adversarial samples"
11 / 11 papers shown
Title
Relationship between Uncertainty in DNNs and Adversarial Attacks
Abigail Adeniran
Adewale Adeyemo
Adewale Adeyemo
AAML
20
0
0
20 Sep 2024
Practical Adversarial Attacks Against AI-Driven Power Allocation in a Distributed MIMO Network
Ömer Faruk Tuna
Fehmí Emre Kadan
Leyli Karaçay
AAML
14
6
0
23 Jan 2023
Defensive Distillation based Adversarial Attacks Mitigation Method for Channel Estimation using Deep Learning Models in Next-Generation Wireless Networks
Ferhat Ozgur Catak
Murat Kuzlu
Evren Çatak
Umit Cali
Ozgur Guler
AAML
17
26
0
12 Aug 2022
MUAD: Multiple Uncertainties for Autonomous Driving, a benchmark for multiple uncertainty types and tasks
Gianni Franchi
Xuanlong Yu
Andrei Bursuc
Ángel Tena
Rémi Kazmierczak
Séverine Dubuisson
Emanuel Aldea
David Filliat
UQCV
23
28
0
02 Mar 2022
The Adversarial Security Mitigations of mmWave Beamforming Prediction Models using Defensive Distillation and Adversarial Retraining
Murat Kuzlu
Ferhat Ozgur Catak
Umit Cali
Evren Çatak
Ozgur Guler
AAML
24
9
0
16 Feb 2022
Security Concerns on Machine Learning Solutions for 6G Networks in mmWave Beam Prediction
Ferhat Ozgur Catak
Evren Çatak
Murat Kuzlu
Umit Cali
Devrim Unal
AAML
35
44
0
09 May 2021
Adversarial Machine Learning Security Problems for 6G: mmWave Beam Prediction Use-Case
Evren Çatak
Ferhat Ozgur Catak
A. Moldsvor
AAML
19
22
0
12 Mar 2021
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
276
5,661
0
05 Dec 2016
Adversarial Machine Learning at Scale
Alexey Kurakin
Ian Goodfellow
Samy Bengio
AAML
264
3,110
0
04 Nov 2016
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
287
5,837
0
08 Jul 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,138
0
06 Jun 2015
1