Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2102.05346
Cited By
The Hessigheim 3D (H3D) Benchmark on Semantic Segmentation of High-Resolution 3D Point Clouds and Textured Meshes from UAV LiDAR and Multi-View-Stereo
10 February 2021
Michael Kölle
D. Laupheimer
S. Schmohl
Norbert Haala
Franz Rottensteiner
Jan Dirk Wegner
H. Ledoux
3DPC
3DV
Re-assign community
ArXiv
PDF
HTML
Papers citing
"The Hessigheim 3D (H3D) Benchmark on Semantic Segmentation of High-Resolution 3D Point Clouds and Textured Meshes from UAV LiDAR and Multi-View-Stereo"
7 / 7 papers shown
Title
Ground Awareness in Deep Learning for Large Outdoor Point Cloud Segmentation
Kevin Qiu
Dimitri Bulatov
Dorota Iwaszczuk
3DPC
52
0
0
30 Jan 2025
Deep Learning on 3D Semantic Segmentation: A Detailed Review
Thodoris Betsas
Andreas Georgopoulos
Anastasios Doulamis
Pierre Grussenmeyer
3DV
3DPC
28
1
0
04 Nov 2024
HRHD-HK: A benchmark dataset of high-rise and high-density urban scenes for 3D semantic segmentation of photogrammetric point clouds
Maosu Li
Yijie Wu
A. G. Yeh
Fan Xue
3DV
3DPC
21
3
0
16 Jul 2023
Effective Utilisation of Multiple Open-Source Datasets to Improve Generalisation Performance of Point Cloud Segmentation Models
Matthew Howe
Boris Repasky
Timothy Payne
3DPC
12
0
0
29 Nov 2022
One Class One Click: Quasi Scene-level Weakly Supervised Point Cloud Semantic Segmentation with Active Learning
Puzuo Wang
W. Yao
Jiejing Shao
16
17
0
23 Nov 2022
SensatUrban: Learning Semantics from Urban-Scale Photogrammetric Point Clouds
Qingyong Hu
Bo Yang
Sheikh Khalid
W. Xiao
Niki Trigoni
Andrew Markham
3DPC
11
85
0
12 Jan 2022
3D Instance Segmentation of MVS Buildings
Jiazhou Chen
Yanghui Xu
Shufang Lu
Ronghua Liang
Liangliang Nan
ISeg
3DV
16
23
0
18 Dec 2021
1