ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.06350
  4. Cited By
Projected Wasserstein gradient descent for high-dimensional Bayesian
  inference
v1v2 (latest)

Projected Wasserstein gradient descent for high-dimensional Bayesian inference

12 February 2021
Yifei Wang
Peng Chen
Wuchen Li
ArXiv (abs)PDFHTML

Papers citing "Projected Wasserstein gradient descent for high-dimensional Bayesian inference"

16 / 16 papers shown
Title
Visual Prompting for One-shot Controllable Video Editing without Inversion
Visual Prompting for One-shot Controllable Video Editing without Inversion
Zhengbo Zhang
Yuxi Zhou
Duo Peng
Joo-Hwee Lim
Zhigang Tu
De Wen Soh
Lin Geng Foo
DiffM
105
1
0
19 Apr 2025
Path-Guided Particle-based Sampling
Path-Guided Particle-based Sampling
Mingzhou Fan
Ruida Zhou
C. Tian
Xiaoning Qian
122
7
0
04 Dec 2024
Forward-Euler time-discretization for Wasserstein gradient flows can be
  wrong
Forward-Euler time-discretization for Wasserstein gradient flows can be wrong
Yewei Xu
Qin Li
87
1
0
12 Jun 2024
Wasserstein Gradient Boosting: A General Framework with Applications to
  Posterior Regression
Wasserstein Gradient Boosting: A General Framework with Applications to Posterior Regression
Takuo Matsubara
46
0
0
15 May 2024
Input-gradient space particle inference for neural network ensembles
Input-gradient space particle inference for neural network ensembles
Trung Trinh
Markus Heinonen
Luigi Acerbi
Samuel Kaski
UQCV
75
4
0
05 Jun 2023
Minimizing $f$-Divergences by Interpolating Velocity Fields
Minimizing fff-Divergences by Interpolating Velocity Fields
Song Liu
Jiahao Yu
J. Simons
Mingxuan Yi
Mark Beaumont
115
5
0
24 May 2023
Towards Understanding the Dynamics of Gaussian-Stein Variational
  Gradient Descent
Towards Understanding the Dynamics of Gaussian-Stein Variational Gradient Descent
Tianle Liu
Promit Ghosal
Krishnakumar Balasubramanian
Natesh S. Pillai
111
11
0
23 May 2023
The Score-Difference Flow for Implicit Generative Modeling
The Score-Difference Flow for Implicit Generative Modeling
Romann M. Weber
DiffM
70
2
0
25 Apr 2023
Forward-backward Gaussian variational inference via JKO in the
  Bures-Wasserstein Space
Forward-backward Gaussian variational inference via JKO in the Bures-Wasserstein Space
Michael Diao
Krishnakumar Balasubramanian
Sinho Chewi
Adil Salim
BDL
68
29
0
10 Apr 2023
Gradient Flows for Sampling: Mean-Field Models, Gaussian Approximations
  and Affine Invariance
Gradient Flows for Sampling: Mean-Field Models, Gaussian Approximations and Affine Invariance
Yifan Chen
Daniel Zhengyu Huang
Jiaoyang Huang
Sebastian Reich
Andrew M. Stuart
76
19
0
21 Feb 2023
Particle-based Variational Inference with Preconditioned Functional
  Gradient Flow
Particle-based Variational Inference with Preconditioned Functional Gradient Flow
Hanze Dong
Xi Wang
Yong Lin
Tong Zhang
96
20
0
25 Nov 2022
Residual-based error correction for neural operator accelerated
  infinite-dimensional Bayesian inverse problems
Residual-based error correction for neural operator accelerated infinite-dimensional Bayesian inverse problems
Lianghao Cao
Thomas O'Leary-Roseberry
Prashant K. Jha
J. Oden
Omar Ghattas
67
26
0
06 Oct 2022
Feature Space Particle Inference for Neural Network Ensembles
Feature Space Particle Inference for Neural Network Ensembles
Shingo Yashima
Teppei Suzuki
Kohta Ishikawa
Ikuro Sato
Rei Kawakami
BDL
66
11
0
02 Jun 2022
Efficient Gradient Flows in Sliced-Wasserstein Space
Efficient Gradient Flows in Sliced-Wasserstein Space
Clément Bonet
Nicolas Courty
Franccois Septier
Lucas Drumetz
141
21
0
21 Oct 2021
Repulsive Deep Ensembles are Bayesian
Repulsive Deep Ensembles are Bayesian
Francesco DÁngelo
Vincent Fortuin
UQCVBDL
125
101
0
22 Jun 2021
Optimizing Functionals on the Space of Probabilities with Input Convex
  Neural Networks
Optimizing Functionals on the Space of Probabilities with Input Convex Neural Networks
David Alvarez-Melis
Yair Schiff
Youssef Mroueh
105
57
0
01 Jun 2021
1