Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2102.06387
Cited By
The Distributed Discrete Gaussian Mechanism for Federated Learning with Secure Aggregation
12 February 2021
Peter Kairouz
Ziyu Liu
Thomas Steinke
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"The Distributed Discrete Gaussian Mechanism for Federated Learning with Secure Aggregation"
41 / 141 papers shown
Title
The Fundamental Price of Secure Aggregation in Differentially Private Federated Learning
Wei-Ning Chen
Christopher A. Choquette-Choo
Peter Kairouz
A. Suresh
FedML
31
63
0
07 Mar 2022
Differentially Private Federated Learning with Local Regularization and Sparsification
Anda Cheng
Peisong Wang
Xi Sheryl Zhang
Jian Cheng
FedML
20
70
0
07 Mar 2022
Federated Learning with Sparsified Model Perturbation: Improving Accuracy under Client-Level Differential Privacy
Rui Hu
Yanmin Gong
Yuanxiong Guo
FedML
19
62
0
15 Feb 2022
OLIVE: Oblivious Federated Learning on Trusted Execution Environment against the risk of sparsification
Fumiyuki Kato
Yang Cao
Masatoshi Yoshikawa
FedML
19
5
0
15 Feb 2022
Shuffle Private Linear Contextual Bandits
Sayak Ray Chowdhury
Xingyu Zhou
FedML
16
25
0
11 Feb 2022
Decepticons: Corrupted Transformers Breach Privacy in Federated Learning for Language Models
Liam H. Fowl
Jonas Geiping
Steven Reich
Yuxin Wen
Wojtek Czaja
Micah Goldblum
Tom Goldstein
FedML
71
56
0
29 Jan 2022
Survey on Federated Learning Threats: concepts, taxonomy on attacks and defences, experimental study and challenges
Nuria Rodríguez-Barroso
Daniel Jiménez López
M. V. Luzón
Francisco Herrera
Eugenio Martínez-Cámara
FedML
29
211
0
20 Jan 2022
Secret Sharing Sharing For Highly Scalable Secure Aggregation
Timothy Stevens
Joseph P. Near
Christian Skalka
FedML
14
5
0
03 Jan 2022
EIFFeL: Ensuring Integrity for Federated Learning
A. Chowdhury
Chuan Guo
S. Jha
L. V. D. van der Maaten
FedML
77
73
0
23 Dec 2021
Pure Differential Privacy from Secure Intermediaries
Albert Cheu
Chao Yan
FedML
12
9
0
19 Dec 2021
Efficient Differentially Private Secure Aggregation for Federated Learning via Hardness of Learning with Errors
Timothy Stevens
Christian Skalka
C. Vincent
J. Ring
Samuel Clark
Joseph P. Near
FedML
14
71
0
13 Dec 2021
Are We There Yet? Timing and Floating-Point Attacks on Differential Privacy Systems
Jiankai Jin
Eleanor McMurtry
Benjamin I. P. Rubinstein
O. Ohrimenko
12
36
0
10 Dec 2021
Locally Differentially Private Sparse Vector Aggregation
Mingxun Zhou
Tianhao Wang
T-H. Hubert Chan
Giulia Fanti
E. Shi
FedML
37
28
0
07 Dec 2021
When the Curious Abandon Honesty: Federated Learning Is Not Private
Franziska Boenisch
Adam Dziedzic
R. Schuster
Ali Shahin Shamsabadi
Ilia Shumailov
Nicolas Papernot
FedML
AAML
69
181
0
06 Dec 2021
Eluding Secure Aggregation in Federated Learning via Model Inconsistency
Dario Pasquini
Danilo Francati
G. Ateniese
FedML
12
100
0
14 Nov 2021
DP-REC: Private & Communication-Efficient Federated Learning
Aleksei Triastcyn
M. Reisser
Christos Louizos
FedML
12
16
0
09 Nov 2021
Towards Sparse Federated Analytics: Location Heatmaps under Distributed Differential Privacy with Secure Aggregation
Eugene Bagdasaryan
Peter Kairouz
S. Mellem
Adria Gascon
Kallista A. Bonawitz
D. Estrin
Marco Gruteser
14
28
0
03 Nov 2021
Infinitely Divisible Noise in the Low Privacy Regime
Rasmus Pagh
N. Stausholm
FedML
25
2
0
13 Oct 2021
The Skellam Mechanism for Differentially Private Federated Learning
Naman Agarwal
Peter Kairouz
Ziyu Liu
FedML
11
121
0
11 Oct 2021
Private Multi-Task Learning: Formulation and Applications to Federated Learning
Shengyuan Hu
Zhiwei Steven Wu
Virginia Smith
FedML
13
19
0
30 Aug 2021
A Field Guide to Federated Optimization
Jianyu Wang
Zachary B. Charles
Zheng Xu
Gauri Joshi
H. B. McMahan
...
Mi Zhang
Tong Zhang
Chunxiang Zheng
Chen Zhu
Wennan Zhu
FedML
175
411
0
14 Jul 2021
Shuffle Private Stochastic Convex Optimization
Albert Cheu
Matthew Joseph
Jieming Mao
Binghui Peng
FedML
15
25
0
17 Jun 2021
Federated Learning Framework with Straggling Mitigation and Privacy-Awareness for AI-based Mobile Application Services
Y. Saputra
Diep N. Nguyen
D. Hoang
Viet Quoc Pham
E. Dutkiewicz
W. Hwang
FedML
12
12
0
17 Jun 2021
FED-
χ
2
χ^2
χ
2
: Privacy Preserving Federated Correlation Test
Lun Wang
Qi Pang
Shuai Wang
D. Song
FedML
23
5
0
30 May 2021
On the Renyi Differential Privacy of the Shuffle Model
Antonious M. Girgis
Deepesh Data
Suhas Diggavi
A. Suresh
Peter Kairouz
12
44
0
11 May 2021
Locally Private k-Means in One Round
Alisa Chang
Badih Ghazi
Ravi Kumar
Pasin Manurangsi
37
30
0
20 Apr 2021
Communication-Efficient Agnostic Federated Averaging
Jae Hun Ro
Mingqing Chen
Rajiv Mathews
M. Mohri
A. Suresh
FedML
17
17
0
06 Apr 2021
D3p -- A Python Package for Differentially-Private Probabilistic Programming
Lukas Prediger
Niki Loppi
Samuel Kaski
Antti Honkela
9
6
0
22 Mar 2021
DataLens: Scalable Privacy Preserving Training via Gradient Compression and Aggregation
Boxin Wang
Fan Wu
Yunhui Long
Luka Rimanic
Ce Zhang
Bo-wen Li
FedML
29
63
0
20 Mar 2021
Practical and Private (Deep) Learning without Sampling or Shuffling
Peter Kairouz
Brendan McMahan
Shuang Song
Om Thakkar
Abhradeep Thakurta
Zheng Xu
FedML
180
154
0
26 Feb 2021
Auto-weighted Robust Federated Learning with Corrupted Data Sources
Shenghui Li
Edith C. H. Ngai
Fanghua Ye
Thiemo Voigt
FedML
16
28
0
14 Jan 2021
FedEval: A Holistic Evaluation Framework for Federated Learning
Di Chai
Leye Wang
Liu Yang
Junxue Zhang
Kai Chen
Qian Yang
FedML
25
8
0
19 Nov 2020
Privacy-preserving Data Sharing on Vertically Partitioned Data
Razane Tajeddine
Joonas Jälkö
Samuel Kaski
Antti Honkela
FedML
28
8
0
19 Oct 2020
Strengthening Order Preserving Encryption with Differential Privacy
Amrita Roy Chowdhury
Bolin Ding
S. Jha
Weiran Liu
Jingren Zhou
13
8
0
11 Sep 2020
An Accurate, Scalable and Verifiable Protocol for Federated Differentially Private Averaging
C. Sabater
A. Bellet
J. Ramon
FedML
13
18
0
12 Jun 2020
Device Heterogeneity in Federated Learning: A Superquantile Approach
Yassine Laguel
Krishna Pillutla
J. Malick
Zaïd Harchaoui
FedML
32
22
0
25 Feb 2020
Robust Aggregation for Federated Learning
Krishna Pillutla
Sham Kakade
Zaïd Harchaoui
FedML
30
629
0
31 Dec 2019
Advances and Open Problems in Federated Learning
Peter Kairouz
H. B. McMahan
Brendan Avent
A. Bellet
M. Bennis
...
Zheng Xu
Qiang Yang
Felix X. Yu
Han Yu
Sen Zhao
FedML
AI4CE
66
6,063
0
10 Dec 2019
Private Aggregation from Fewer Anonymous Messages
Badih Ghazi
Pasin Manurangsi
Rasmus Pagh
A. Velingker
FedML
39
55
0
24 Sep 2019
Amplification by Shuffling: From Local to Central Differential Privacy via Anonymity
Ulfar Erlingsson
Vitaly Feldman
Ilya Mironov
A. Raghunathan
Kunal Talwar
Abhradeep Thakurta
138
420
0
29 Nov 2018
Prochlo: Strong Privacy for Analytics in the Crowd
Andrea Bittau
Ulfar Erlingsson
Petros Maniatis
Ilya Mironov
A. Raghunathan
David Lie
Mitch Rudominer
Ushasree Kode
J. Tinnés
B. Seefeld
85
278
0
02 Oct 2017
Previous
1
2
3