Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2102.06559
Cited By
Infinitely Deep Bayesian Neural Networks with Stochastic Differential Equations
12 February 2021
Winnie Xu
Ricky T. Q. Chen
Xuechen Li
D. Duvenaud
BDL
UQCV
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Infinitely Deep Bayesian Neural Networks with Stochastic Differential Equations"
33 / 33 papers shown
Title
Uncertainty quantification of neural network models of evolving processes via Langevin sampling
C. Safta
Reese E. Jones
Ravi G. Patel
Raelynn Wonnacot
Dan S. Bolintineanu
Craig M. Hamel
S. Kramer
BDL
31
0
0
21 Apr 2025
Improving the Noise Estimation of Latent Neural Stochastic Differential Equations
Linus Heck
Maximilian Gelbrecht
Michael T. Schaub
Niklas Boers
DiffM
28
0
0
23 Dec 2024
Ornstein-Uhlenbeck Adaptation as a Mechanism for Learning in Brains and Machines
Jesus Garcia Fernandez
Nasir Ahmad
Marcel van Gerven
27
1
0
17 Oct 2024
Uncertainty Modeling in Graph Neural Networks via Stochastic Differential Equations
Richard Bergna
Sergio Calvo-Ordoñez
Felix L. Opolka
Pietro Liò
Jose Miguel Hernandez-Lobato
BDL
39
2
0
28 Aug 2024
Fully Bayesian Differential Gaussian Processes through Stochastic Differential Equations
Jian Xu
Zhiqi Lin
Min Chen
Junmei Yang
Delu Zeng
John Paisley
19
0
0
12 Aug 2024
Partially Stochastic Infinitely Deep Bayesian Neural Networks
Sergio Calvo-Ordoñez
Matthieu Meunier
Francesco Piatti
Yuantao Shi
BDL
37
3
0
05 Feb 2024
A Method to Improve the Performance of Reinforcement Learning Based on the Y Operator for a Class of Stochastic Differential Equation-Based Child-Mother Systems
Cheng Yin
Yi Chen
13
0
0
07 Nov 2023
Bayesian Neural Controlled Differential Equations for Treatment Effect Estimation
Konstantin Hess
Valentyn Melnychuk
Dennis Frauen
Stefan Feuerriegel
27
14
0
26 Oct 2023
Learning nonlinear integral operators via Recurrent Neural Networks and its application in solving Integro-Differential Equations
Hardeep Bassi
Yuanran Zhu
Senwei Liang
Jia Yin
Cian C. Reeves
Vojtěch Vlček
Chao Yang
29
8
0
13 Oct 2023
Diffusion Generative Flow Samplers: Improving learning signals through partial trajectory optimization
Dinghuai Zhang
Ricky Tian Qi Chen
Cheng-Hao Liu
Aaron C. Courville
Yoshua Bengio
26
40
0
04 Oct 2023
Graph Neural Stochastic Differential Equations
Richard Bergna
Felix L. Opolka
Pietro Lio'
Jose Miguel Hernandez-Lobato
16
2
0
23 Aug 2023
Faster Training of Neural ODEs Using Gauß-Legendre Quadrature
Alexander Norcliffe
M. Deisenroth
23
3
0
21 Aug 2023
Transport meets Variational Inference: Controlled Monte Carlo Diffusions
Francisco Vargas
Shreyas Padhy
Denis Blessing
Nikolas Nusken
DiffM
OT
40
3
0
03 Jul 2023
How to Learn and Generalize From Three Minutes of Data: Physics-Constrained and Uncertainty-Aware Neural Stochastic Differential Equations
Franck Djeumou
Cyrus Neary
Ufuk Topcu
DiffM
24
8
0
10 Jun 2023
Neural Ideal Large Eddy Simulation: Modeling Turbulence with Neural Stochastic Differential Equations
Anudhyan Boral
Z. Y. Wan
Leonardo Zepeda-Núnez
James Lottes
Qing Wang
Yi-fan Chen
John R. Anderson
Fei Sha
AI4CE
PINN
16
11
0
01 Jun 2023
Thermodynamic AI and the fluctuation frontier
Patrick J. Coles
Collin Szczepanski
Denis Melanson
Kaelan Donatella
Antonio J. Martinez
Faris M. Sbahi
AI4CE
32
16
0
09 Feb 2023
Changes from Classical Statistics to Modern Statistics and Data Science
Kai Zhang
Shan-Yu Liu
M. Xiong
26
0
0
30 Oct 2022
Variational Inference for Infinitely Deep Neural Networks
Achille Nazaret
David M. Blei
BDL
23
11
0
21 Sep 2022
Continuous-time Particle Filtering for Latent Stochastic Differential Equations
Ruizhi Deng
Greg Mori
Andreas M. Lehrmann
BDL
20
0
0
01 Sep 2022
Robust and Safe Autonomous Navigation for Systems with Learned SE(3) Hamiltonian Dynamics
Zhichao Li
T. Duong
Nikolay A. Atanasov
11
1
0
22 Jul 2022
Noisy Learning for Neural ODEs Acts as a Robustness Locus Widening
Martin Gonzalez
H. Hajri
Loic Cantat
M. Petreczky
27
1
0
16 Jun 2022
Realization Theory Of Recurrent Neural ODEs Using Polynomial System Embeddings
Martin Gonzalez
Thibault Defourneau
H. Hajri
M. Petreczky
31
2
0
24 May 2022
Learning Stochastic Dynamics with Statistics-Informed Neural Network
Yuanran Zhu
Yunhao Tang
Changho Kim
19
18
0
24 Feb 2022
Predicting the impact of treatments over time with uncertainty aware neural differential equations
E. Brouwer
J. Hernández
Stephanie L. Hyland
OOD
CML
8
25
0
24 Feb 2022
Characteristic Neural Ordinary Differential Equations
Xingzi Xu
Ali Hasan
Khalil Elkhalil
Jie Ding
Vahid Tarokh
BDL
19
3
0
25 Nov 2021
Bayesian Learning via Neural Schrödinger-Föllmer Flows
Francisco Vargas
Andrius Ovsianas
David Fernandes
Mark Girolami
Neil D. Lawrence
Nikolas Nusken
BDL
32
45
0
20 Nov 2021
Constructing Neural Network-Based Models for Simulating Dynamical Systems
Christian Møldrup Legaard
Thomas Schranz
G. Schweiger
Ján Drgovna
Basak Falay
C. Gomes
Alexandros Iosifidis
M. Abkar
P. Larsen
PINN
AI4CE
22
93
0
02 Nov 2021
GoTube: Scalable Stochastic Verification of Continuous-Depth Models
Sophie Gruenbacher
Mathias Lechner
Ramin Hasani
Daniela Rus
T. Henzinger
S. Smolka
Radu Grosu
18
17
0
18 Jul 2021
Distributional Gradient Matching for Learning Uncertain Neural Dynamics Models
Lenart Treven
Philippe Wenk
Florian Dorfler
Andreas Krause
OOD
11
2
0
22 Jun 2021
Stateful ODE-Nets using Basis Function Expansions
A. Queiruga
N. Benjamin Erichson
Liam Hodgkinson
Michael W. Mahoney
27
16
0
21 Jun 2021
A Variational Perspective on Diffusion-Based Generative Models and Score Matching
Chin-Wei Huang
Jae Hyun Lim
Aaron Courville
DiffM
30
186
0
05 Jun 2021
Efficient and Accurate Gradients for Neural SDEs
Patrick Kidger
James Foster
Xuechen Li
Terry Lyons
DiffM
19
60
0
27 May 2021
SDE-Net: Equipping Deep Neural Networks with Uncertainty Estimates
Lingkai Kong
Jimeng Sun
Chao Zhang
UQCV
42
103
0
24 Aug 2020
1