ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.08208
  4. Cited By
Conditional Distributional Treatment Effect with Kernel Conditional Mean
  Embeddings and U-Statistic Regression

Conditional Distributional Treatment Effect with Kernel Conditional Mean Embeddings and U-Statistic Regression

16 February 2021
Junhyung Park
Uri Shalit
Bernhard Schölkopf
Krikamol Muandet
    CML
ArXivPDFHTML

Papers citing "Conditional Distributional Treatment Effect with Kernel Conditional Mean Embeddings and U-Statistic Regression"

24 / 24 papers shown
Title
Optimizing Estimators of Squared Calibration Errors in Classification
Optimizing Estimators of Squared Calibration Errors in Classification
Sebastian G. Gruber
Francis Bach
69
1
0
24 Feb 2025
Early Concept Drift Detection via Prediction Uncertainty
Early Concept Drift Detection via Prediction Uncertainty
Pengqian Lu
Jie Lu
Anjin Liu
G. Zhang
79
0
0
15 Dec 2024
Quantifying Aleatoric Uncertainty of the Treatment Effect: A Novel Orthogonal Learner
Quantifying Aleatoric Uncertainty of the Treatment Effect: A Novel Orthogonal Learner
Valentyn Melnychuk
Stefan Feuerriegel
M. Schaar
CML
54
2
0
05 Nov 2024
Estimating Distributional Treatment Effects in Randomized Experiments:
  Machine Learning for Variance Reduction
Estimating Distributional Treatment Effects in Randomized Experiments: Machine Learning for Variance Reduction
Undral Byambadalai
Tatsushi Oka
Shota Yasui
CML
34
0
0
22 Jul 2024
Neural-Kernel Conditional Mean Embeddings
Neural-Kernel Conditional Mean Embeddings
Eiki Shimizu
Kenji Fukumizu
Dino Sejdinovic
20
3
0
16 Mar 2024
Constructing Synthetic Treatment Groups without the Mean Exchangeability
  Assumption
Constructing Synthetic Treatment Groups without the Mean Exchangeability Assumption
Yuhang Zhang
Yue Liu
Zhihua Zhang
13
0
0
28 Sep 2023
Towards Practicable Sequential Shift Detectors
Towards Practicable Sequential Shift Detectors
Oliver Cobb
A. V. Looveren
11
0
0
27 Jul 2023
Learning sources of variability from high-dimensional observational
  studies
Learning sources of variability from high-dimensional observational studies
Eric W. Bridgeford
Jaewon Chung
B. Gilbert
Sambit Panda
Adam Li
Cencheng Shen
A. Badea
B. Caffo
Joshua T. Vogelstein
CML
11
3
0
26 Jul 2023
Asymptotically Unbiased Synthetic Control Methods by Density Matching
Asymptotically Unbiased Synthetic Control Methods by Density Matching
Masahiro Kato
Akari Ohda
42
1
0
20 Jul 2023
iSCAN: Identifying Causal Mechanism Shifts among Nonlinear Additive
  Noise Models
iSCAN: Identifying Causal Mechanism Shifts among Nonlinear Additive Noise Models
Tianyu Chen
Kevin Bello
Bryon Aragam
Pradeep Ravikumar
CML
22
1
0
30 Jun 2023
Causal survival embeddings: non-parametric counterfactual inference
  under censoring
Causal survival embeddings: non-parametric counterfactual inference under censoring
Carlos García-Meixide
Marcos Matabuena
CML
22
5
0
20 Jun 2023
Nonparametric Identifiability of Causal Representations from Unknown
  Interventions
Nonparametric Identifiability of Causal Representations from Unknown Interventions
Julius von Kügelgen
M. Besserve
Wendong Liang
Luigi Gresele
Armin Kekić
Elias Bareinboim
David M. Blei
Bernhard Schölkopf
CML
10
56
0
01 Jun 2023
An Efficient Doubly-Robust Test for the Kernel Treatment Effect
An Efficient Doubly-Robust Test for the Kernel Treatment Effect
Diego Martinez-Taboada
Aaditya Ramdas
Edward H. Kennedy
OOD
11
5
0
26 Apr 2023
Confidence and Uncertainty Assessment for Distributional Random Forests
Confidence and Uncertainty Assessment for Distributional Random Forests
Jeffrey Näf
Corinne Emmenegger
Peter Buhlmann
N. Meinshausen
19
3
0
11 Feb 2023
On the Relationship Between Explanation and Prediction: A Causal View
On the Relationship Between Explanation and Prediction: A Causal View
Amir-Hossein Karimi
Krikamol Muandet
Simon Kornblith
Bernhard Schölkopf
Been Kim
FAtt
CML
24
14
0
13 Dec 2022
Doubly Robust Kernel Statistics for Testing Distributional Treatment
  Effects
Doubly Robust Kernel Statistics for Testing Distributional Treatment Effects
Jake Fawkes
Robert Hu
R. Evans
Dino Sejdinovic
OOD
16
3
0
09 Dec 2022
BENK: The Beran Estimator with Neural Kernels for Estimating the
  Heterogeneous Treatment Effect
BENK: The Beran Estimator with Neural Kernels for Estimating the Heterogeneous Treatment Effect
Stanislav R. Kirpichenko
Lev V. Utkin
A. Konstantinov
CML
14
0
0
19 Nov 2022
Heterogeneous Treatment Effect with Trained Kernels of the
  Nadaraya-Watson Regression
Heterogeneous Treatment Effect with Trained Kernels of the Nadaraya-Watson Regression
A. Konstantinov
Stanislav R. Kirpichenko
Lev V. Utkin
CML
14
3
0
19 Jul 2022
Causal Discovery in Heterogeneous Environments Under the Sparse
  Mechanism Shift Hypothesis
Causal Discovery in Heterogeneous Environments Under the Sparse Mechanism Shift Hypothesis
Ronan Perry
Julius von Kügelgen
Bernhard Schölkopf
28
48
0
04 Jun 2022
Feature Selection for Discovering Distributional Treatment Effect
  Modifiers
Feature Selection for Discovering Distributional Treatment Effect Modifiers
Yoichi Chikahara
M. Yamada
H. Kashima
CML
11
5
0
01 Jun 2022
Robust and Agnostic Learning of Conditional Distributional Treatment
  Effects
Robust and Agnostic Learning of Conditional Distributional Treatment Effects
Nathan Kallus
M. Oprescu
CML
OOD
35
10
0
23 May 2022
Context-Aware Drift Detection
Context-Aware Drift Detection
Oliver Cobb
A. V. Looveren
13
16
0
16 Mar 2022
Estimating Potential Outcome Distributions with Collaborating Causal
  Networks
Estimating Potential Outcome Distributions with Collaborating Causal Networks
Tianhui Zhou
William E Carson IV
David Carlson
CML
27
6
0
04 Oct 2021
Learning Representations for Counterfactual Inference
Learning Representations for Counterfactual Inference
Fredrik D. Johansson
Uri Shalit
David Sontag
CML
OOD
BDL
207
718
0
12 May 2016
1