ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.11409
  4. Cited By
On Feature Collapse and Deep Kernel Learning for Single Forward Pass
  Uncertainty

On Feature Collapse and Deep Kernel Learning for Single Forward Pass Uncertainty

22 February 2021
Joost R. van Amersfoort
Lewis Smith
Andrew Jesson
Oscar Key
Y. Gal
    UQCV
ArXivPDFHTML

Papers citing "On Feature Collapse and Deep Kernel Learning for Single Forward Pass Uncertainty"

17 / 17 papers shown
Title
Enhancing Treatment Effect Estimation via Active Learning: A Counterfactual Covering Perspective
Enhancing Treatment Effect Estimation via Active Learning: A Counterfactual Covering Perspective
Hechuan Wen
Tong Chen
Mingming Gong
Li Kheng Chai
S. Sadiq
Hongzhi Yin
CML
58
0
0
08 May 2025
Uncertainty-Aware Trajectory Prediction via Rule-Regularized Heteroscedastic Deep Classification
Uncertainty-Aware Trajectory Prediction via Rule-Regularized Heteroscedastic Deep Classification
Kumar Manas
Christian Schlauch
Adrian Paschke
Christian Wirth
Nadja Klein
40
0
0
17 Apr 2025
ConceptVAE: Self-Supervised Fine-Grained Concept Disentanglement from 2D Echocardiographies
ConceptVAE: Self-Supervised Fine-Grained Concept Disentanglement from 2D Echocardiographies
C. Ciușdel
Alex Serban
Tiziano Passerini
CoGe
69
1
0
03 Feb 2025
Lightning UQ Box: A Comprehensive Framework for Uncertainty
  Quantification in Deep Learning
Lightning UQ Box: A Comprehensive Framework for Uncertainty Quantification in Deep Learning
Nils Lehmann
Jakob Gawlikowski
Adam J. Stewart
Vytautas Jancauskas
Stefan Depeweg
Eric T. Nalisnick
N. Gottschling
42
0
0
04 Oct 2024
Distance Preserving Machine Learning for Uncertainty Aware Accelerator
  Capacitance Predictions
Distance Preserving Machine Learning for Uncertainty Aware Accelerator Capacitance Predictions
S. Goldenberg
M. Schram
Kishansingh Rajput
T. Britton
C. Pappas
Dawei Lu
Jared Walden
M. Radaideh
Sarah Cousineau
S. Harave
29
1
0
05 Jul 2023
Vecchia Gaussian Process Ensembles on Internal Representations of Deep Neural Networks
Vecchia Gaussian Process Ensembles on Internal Representations of Deep Neural Networks
Felix Jimenez
Matthias Katzfuss
BDL
UQCV
61
1
0
26 May 2023
Uncertainty Estimation for Multi-view Data: The Power of Seeing the
  Whole Picture
Uncertainty Estimation for Multi-view Data: The Power of Seeing the Whole Picture
M. Jung
He Zhao
Joanna Dipnall
Belinda Gabbe
Lan Du
UQCV
EDL
55
12
0
06 Oct 2022
Generating and Detecting True Ambiguity: A Forgotten Danger in DNN
  Supervision Testing
Generating and Detecting True Ambiguity: A Forgotten Danger in DNN Supervision Testing
Michael Weiss
A. Gómez
Paolo Tonella
AAML
11
6
0
21 Jul 2022
Distributional Gaussian Processes Layers for Out-of-Distribution
  Detection
Distributional Gaussian Processes Layers for Out-of-Distribution Detection
S. Popescu
D. Sharp
James H. Cole
Konstantinos Kamnitsas
Ben Glocker
OOD
21
0
0
27 Jun 2022
Batch-Ensemble Stochastic Neural Networks for Out-of-Distribution
  Detection
Batch-Ensemble Stochastic Neural Networks for Out-of-Distribution Detection
Xiongjie Chen
Yunpeng Li
Yongxin Yang
UQCV
OODD
19
3
0
26 Jun 2022
A Simple Approach to Improve Single-Model Deep Uncertainty via
  Distance-Awareness
A Simple Approach to Improve Single-Model Deep Uncertainty via Distance-Awareness
J. Liu
Shreyas Padhy
Jie Jessie Ren
Zi Lin
Yeming Wen
Ghassen Jerfel
Zachary Nado
Jasper Snoek
Dustin Tran
Balaji Lakshminarayanan
UQCV
BDL
16
48
0
01 May 2022
AutoDEUQ: Automated Deep Ensemble with Uncertainty Quantification
AutoDEUQ: Automated Deep Ensemble with Uncertainty Quantification
Romain Egele
R. Maulik
Krishnan Raghavan
Bethany Lusch
Isabelle M Guyon
Prasanna Balaprakash
UQCV
OOD
BDL
20
45
0
26 Oct 2021
Deep Classifiers with Label Noise Modeling and Distance Awareness
Deep Classifiers with Label Noise Modeling and Distance Awareness
Vincent Fortuin
Mark Collier
F. Wenzel
J. Allingham
J. Liu
Dustin Tran
Balaji Lakshminarayanan
Jesse Berent
Rodolphe Jenatton
E. Kokiopoulou
UQCV
31
11
0
06 Oct 2021
Adversarial Examples, Uncertainty, and Transfer Testing Robustness in
  Gaussian Process Hybrid Deep Networks
Adversarial Examples, Uncertainty, and Transfer Testing Robustness in Gaussian Process Hybrid Deep Networks
John Bradshaw
A. G. Matthews
Zoubin Ghahramani
BDL
AAML
60
171
0
08 Jul 2017
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
270
5,660
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,136
0
06 Jun 2015
Manifold Gaussian Processes for Regression
Manifold Gaussian Processes for Regression
Roberto Calandra
Jan Peters
C. Rasmussen
M. Deisenroth
86
271
0
24 Feb 2014
1