Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2102.11845
Cited By
v1
v2
v3 (latest)
Learning with User-Level Privacy
23 February 2021
Daniel Levy
Ziteng Sun
Kareem Amin
Satyen Kale
Alex Kulesza
M. Mohri
A. Suresh
FedML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Learning with User-Level Privacy"
15 / 65 papers shown
Title
Algorithms for bounding contribution for histogram estimation under user-level privacy
Yuhan Liu
A. Suresh
Wennan Zhu
Peter Kairouz
Marco Gruteser
59
9
0
07 Jun 2022
New Lower Bounds for Private Estimation and a Generalized Fingerprinting Lemma
Gautam Kamath
Argyris Mouzakis
Vikrant Singhal
FedML
107
30
0
17 May 2022
Network change point localisation under local differential privacy
Mengchu Li
Thomas B. Berrett
Yi Yu
78
7
0
14 May 2022
Private Non-Convex Federated Learning Without a Trusted Server
Andrew Lowy
Ali Ghafelebashi
Meisam Razaviyayn
FedML
99
27
0
13 Mar 2022
What Does it Mean for a Language Model to Preserve Privacy?
Hannah Brown
Katherine Lee
Fatemehsadat Mireshghallah
Reza Shokri
Florian Tramèr
PILM
104
243
0
11 Feb 2022
Personalization Improves Privacy-Accuracy Tradeoffs in Federated Learning
A. Bietti
Chen-Yu Wei
Miroslav Dudík
John Langford
Zhiwei Steven Wu
FedML
83
50
0
10 Feb 2022
Efficient Mean Estimation with Pure Differential Privacy via a Sum-of-Squares Exponential Mechanism
Samuel B. Hopkins
Gautam Kamath
Mahbod Majid
FedML
80
62
0
25 Nov 2021
Node-Level Differentially Private Graph Neural Networks
Ameya Daigavane
Gagan Madan
Aditya Sinha
Abhradeep Thakurta
Gaurav Aggarwal
Prateek Jain
78
59
0
23 Nov 2021
A Private and Computationally-Efficient Estimator for Unbounded Gaussians
Gautam Kamath
Argyris Mouzakis
Vikrant Singhal
Thomas Steinke
Jonathan R. Ullman
95
40
0
08 Nov 2021
Tight and Robust Private Mean Estimation with Few Users
Cheng-Han Chiang
Vahab Mirrokni
Hung-yi Lee
FedML
79
30
0
22 Oct 2021
User-Level Private Learning via Correlated Sampling
Badih Ghazi
Ravi Kumar
Pasin Manurangsi
FedML
125
13
0
21 Oct 2021
FriendlyCore: Practical Differentially Private Aggregation
Eliad Tsfadia
E. Cohen
Haim Kaplan
Yishay Mansour
Uri Stemmer
111
36
0
19 Oct 2021
Private Multi-Task Learning: Formulation and Applications to Federated Learning
Shengyuan Hu
Zhiwei Steven Wu
Virginia Smith
FedML
92
20
0
30 Aug 2021
Adapting to Function Difficulty and Growth Conditions in Private Optimization
Hilal Asi
Daniel Levy
John C. Duchi
39
23
0
05 Aug 2021
Instance-optimal Mean Estimation Under Differential Privacy
Ziyue Huang
Yuting Liang
K. Yi
80
57
0
01 Jun 2021
Previous
1
2