Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2102.11845
Cited By
v1
v2
v3 (latest)
Learning with User-Level Privacy
23 February 2021
Daniel Levy
Ziteng Sun
Kareem Amin
Satyen Kale
Alex Kulesza
M. Mohri
A. Suresh
FedML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Learning with User-Level Privacy"
50 / 65 papers shown
Title
Black-Box Privacy Attacks on Shared Representations in Multitask Learning
John Abascal
Nicolás Berrios
Alina Oprea
Jonathan R. Ullman
Adam D. Smith
Matthew Jagielski
MLAU
16
0
0
19 Jun 2025
Nosy Layers, Noisy Fixes: Tackling DRAs in Federated Learning Systems using Explainable AI
Meghali Nandi
Arash Shaghaghi
Nazatul Haque Sultan
Gustavo Batista
Raymond K. Zhao
Sanjay Jha
AAML
167
0
0
16 May 2025
Video-DPRP: A Differentially Private Approach for Visual Privacy-Preserving Video Human Activity Recognition
Allassan Tchangmena A Nken
Susan Mckeever
Peter Corcoran
Ihsan Ullah
PICV
96
0
0
03 Mar 2025
Towards User-level Private Reinforcement Learning with Human Feedback
Jing Zhang
Mingxi Lei
Meng Ding
Mengdi Li
Zihang Xiang
Difei Xu
Jinhui Xu
Di Wang
107
3
0
22 Feb 2025
Characterizing the Accuracy-Communication-Privacy Trade-off in Distributed Stochastic Convex Optimization
Sudeep Salgia
Nikola Pavlovic
Yuejie Chi
Qing Zhao
114
0
0
06 Jan 2025
Faster Algorithms for User-Level Private Stochastic Convex Optimization
Andrew Lowy
Daogao Liu
Hilal Asi
53
1
0
24 Oct 2024
Calibrating Noise for Group Privacy in Subsampled Mechanisms
Yangfan Jiang
Xinjian Luo
Yin Yang
Xiaokui Xiao
97
3
0
19 Aug 2024
Private Means and the Curious Incident of the Free Lunch
Jack Fitzsimons
James Honaker
Michael Shoemate
Vikrant Singhal
87
2
0
19 Aug 2024
Better Locally Private Sparse Estimation Given Multiple Samples Per User
Yuheng Ma
Ke Jia
Hanfang Yang
FedML
85
1
0
08 Aug 2024
Private Heterogeneous Federated Learning Without a Trusted Server Revisited: Error-Optimal and Communication-Efficient Algorithms for Convex Losses
Changyu Gao
Andrew Lowy
Xingyu Zhou
Stephen J. Wright
FedML
63
5
0
12 Jul 2024
Fine-Tuning Large Language Models with User-Level Differential Privacy
Zachary Charles
Arun Ganesh
Ryan McKenna
H. B. McMahan
Nicole Mitchell
Krishna Pillutla
Keith Rush
81
14
0
10 Jul 2024
Minimax And Adaptive Transfer Learning for Nonparametric Classification under Distributed Differential Privacy Constraints
Arnab Auddy
T. T. Cai
Abhinav Chakraborty
95
1
0
28 Jun 2024
Mind the Privacy Unit! User-Level Differential Privacy for Language Model Fine-Tuning
Lynn Chua
Badih Ghazi
Yangsibo Huang
Pritish Kamath
Ravi Kumar
Daogao Liu
Pasin Manurangsi
Amer Sinha
Chiyuan Zhang
101
14
0
20 Jun 2024
Optimal Federated Learning for Nonparametric Regression with Heterogeneous Distributed Differential Privacy Constraints
T. T. Cai
Abhinav Chakraborty
Lasse Vuursteen
FedML
83
3
0
10 Jun 2024
Federated Nonparametric Hypothesis Testing with Differential Privacy Constraints: Optimal Rates and Adaptive Tests
T. T. Cai
Abhinav Chakraborty
Lasse Vuursteen
FedML
77
2
0
10 Jun 2024
Learning with User-Level Local Differential Privacy
Puning Zhao
Li Shen
Rongfei Fan
Qingming Li
Huiwen Wu
Xiaogang Xu
Zhe Liu
55
3
0
27 May 2024
A Huber Loss Minimization Approach to Mean Estimation under User-level Differential Privacy
Puning Zhao
Lifeng Lai
Li Shen
Qingming Li
Xiaogang Xu
Zhe Liu
79
7
0
22 May 2024
Online Learning with Unknown Constraints
Karthik Sridharan
Seung Won Wilson Yoo
63
2
0
06 Mar 2024
Defending Against Data Reconstruction Attacks in Federated Learning: An Information Theory Approach
Qi Tan
Qi Li
Yi Zhao
Zhuotao Liu
Xiaobing Guo
Ke Xu
FedML
73
2
0
02 Mar 2024
Clients Collaborate: Flexible Differentially Private Federated Learning with Guaranteed Improvement of Utility-Privacy Trade-off
Yuecheng Li
Lele Fu
Tong Wang
Jian Lou
Bin Chen
Lei Yang
Zibin Zheng
Zibin Zheng
Chuan Chen
FedML
104
4
0
10 Feb 2024
Mean Estimation with User-Level Privacy for Spatio-Temporal IoT Datasets
V. A. Rameshwar
Anshoo Tandon
Prajjwal Gupta
Aditya Vikram Singh
Novoneel Chakraborty
Abhay Sharma
85
3
0
29 Jan 2024
User-level Differentially Private Stochastic Convex Optimization: Efficient Algorithms with Optimal Rates
Hilal Asi
Daogao Liu
69
11
0
07 Nov 2023
SoK: Memorization in General-Purpose Large Language Models
Valentin Hartmann
Anshuman Suri
Vincent Bindschaedler
David Evans
Shruti Tople
Robert West
KELM
LLMAG
89
24
0
24 Oct 2023
User Inference Attacks on Large Language Models
Nikhil Kandpal
Krishna Pillutla
Alina Oprea
Peter Kairouz
Christopher A. Choquette-Choo
Zheng Xu
SILM
AAML
132
19
0
13 Oct 2023
Better and Simpler Lower Bounds for Differentially Private Statistical Estimation
Shyam Narayanan
FedML
68
11
0
10 Oct 2023
User-Level Differential Privacy With Few Examples Per User
Badih Ghazi
Pritish Kamath
Ravi Kumar
Pasin Manurangsi
Raghu Meka
Chiyuan Zhang
89
12
0
21 Sep 2023
Share Your Representation Only: Guaranteed Improvement of the Privacy-Utility Tradeoff in Federated Learning
Zebang Shen
Jiayuan Ye
Anmin Kang
Hamed Hassani
Reza Shokri
FedML
92
18
0
11 Sep 2023
ULDP-FL: Federated Learning with Across Silo User-Level Differential Privacy
Fumiyuki Kato
Li Xiong
Shun Takagi
Yang Cao
Masatoshi Yoshikawa
FedML
69
4
0
23 Aug 2023
Mean Estimation with User-level Privacy under Data Heterogeneity
Rachel Cummings
Vitaly Feldman
Audra McMillan
Kunal Talwar
FedML
71
27
0
28 Jul 2023
Randomized Quantization is All You Need for Differential Privacy in Federated Learning
Yeojoon Youn
Zihao Hu
Juba Ziani
Jacob D. Abernethy
FedML
70
21
0
20 Jun 2023
Differentially Private Wireless Federated Learning Using Orthogonal Sequences
Xizixiang Wei
Tianhao Wang
Ruiquan Huang
Cong Shen
Jing Yang
H. Vincent Poor
95
1
0
14 Jun 2023
Federated Linear Contextual Bandits with User-level Differential Privacy
Ruiquan Huang
Huanyu Zhang
Luca Melis
Milan Shen
Meisam Hajzinia
J. Yang
FedML
54
12
0
08 Jun 2023
Concentrated Geo-Privacy
Yuting Liang
K. Yi
51
6
0
31 May 2023
Training Data Extraction From Pre-trained Language Models: A Survey
Shotaro Ishihara
118
48
0
25 May 2023
Learning across Data Owners with Joint Differential Privacy
Yangsibo Huang
Haotian Jiang
Daogao Liu
Mohammad Mahdian
Jieming Mao
Vahab Mirrokni
FedML
72
0
0
25 May 2023
Post-processing Private Synthetic Data for Improving Utility on Selected Measures
Hao Wang
Shivchander Sudalairaj
J. Henning
Kristjan Greenewald
Akash Srivastava
53
6
0
24 May 2023
On User-Level Private Convex Optimization
Badih Ghazi
Pritish Kamath
Ravi Kumar
Raghu Meka
Pasin Manurangsi
Chiyuan Zhang
FedML
54
10
0
08 May 2023
A Polynomial Time, Pure Differentially Private Estimator for Binary Product Distributions
Vikrant Singhal
91
9
0
13 Apr 2023
Subset-Based Instance Optimality in Private Estimation
Travis Dick
Alex Kulesza
Ziteng Sun
A. Suresh
101
9
0
01 Mar 2023
Personalized Privacy-Preserving Framework for Cross-Silo Federated Learning
Van Tuan Tran
Huy Hieu Pham
Kok-Seng Wong
FedML
85
8
0
22 Feb 2023
Multi-Message Shuffled Privacy in Federated Learning
Antonious M. Girgis
Suhas Diggavi
FedML
95
9
0
22 Feb 2023
Multi-Task Differential Privacy Under Distribution Skew
Walid Krichene
Prateek Jain
Shuang Song
Mukund Sundararajan
Abhradeep Thakurta
Li Zhang
FedML
61
3
0
15 Feb 2023
Continual Mean Estimation Under User-Level Privacy
Anand George
Lekshmi Ramesh
A. V. Singh
Himanshu Tyagi
FedML
70
9
0
20 Dec 2022
Learning to Generate Image Embeddings with User-level Differential Privacy
Zheng Xu
Maxwell D. Collins
Yuxiao Wang
Liviu Panait
Sewoong Oh
S. Augenstein
Ting Liu
Florian Schroff
H. B. McMahan
FedML
92
30
0
20 Nov 2022
Discrete Distribution Estimation under User-level Local Differential Privacy
Jayadev Acharya
Yuhan Liu
Ziteng Sun
64
16
0
07 Nov 2022
Subspace Recovery from Heterogeneous Data with Non-isotropic Noise
John C. Duchi
Vitaly Feldman
Lunjia Hu
Kunal Talwar
FedML
56
12
0
24 Oct 2022
Algorithms with More Granular Differential Privacy Guarantees
Badih Ghazi
Ravi Kumar
Pasin Manurangsi
Thomas Steinke
120
7
0
08 Sep 2022
A Generative Framework for Personalized Learning and Estimation: Theory, Algorithms, and Privacy
Kaan Ozkara
Antonious M. Girgis
Deepesh Data
Suhas Diggavi
FedML
58
3
0
05 Jul 2022
On Privacy and Personalization in Cross-Silo Federated Learning
Ziyu Liu
Shengyuan Hu
Zhiwei Steven Wu
Virginia Smith
FedML
106
56
0
16 Jun 2022
Subject Granular Differential Privacy in Federated Learning
Virendra J. Marathe
Pallika H. Kanani
Daniel W. Peterson
Guy Steele Jr
FedML
56
9
0
07 Jun 2022
1
2
Next