Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2102.11938
Cited By
Baby Intuitions Benchmark (BIB): Discerning the goals, preferences, and actions of others
23 February 2021
Kanishk Gandhi
Gala Stojnic
Brenden Lake
M. Dillon
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Baby Intuitions Benchmark (BIB): Discerning the goals, preferences, and actions of others"
11 / 11 papers shown
Title
MuMA-ToM: Multi-modal Multi-Agent Theory of Mind
Haojun Shi
Suyu Ye
Xinyu Fang
Chuanyang Jin
Leyla Isik
Yen-Ling Kuo
Tianmin Shu
LLMAG
46
7
0
22 Aug 2024
The Overcooked Generalisation Challenge
Constantin Ruhdorfer
Matteo Bortoletto
Anna Penzkofer
Andreas Bulling
44
3
0
25 Jun 2024
Language Models Represent Beliefs of Self and Others
Wentao Zhu
Zhining Zhang
Yizhou Wang
MILM
LRM
30
7
0
28 Feb 2024
Comparing Machines and Children: Using Developmental Psychology Experiments to Assess the Strengths and Weaknesses of LaMDA Responses
Eliza Kosoy
Emily Rose Reagan
Leslie Y. Lai
Alison Gopnik
Danielle Krettek Cobb
15
9
0
18 May 2023
Memory-Augmented Theory of Mind Network
D. Nguyen
Phuoc Nguyen
Hung Le
Kien Do
Svetha Venkatesh
T. Tran
17
6
0
17 Jan 2023
Solving the Baby Intuitions Benchmark with a Hierarchically Bayesian Theory of Mind
Tan Zhi-Xuan
Nishad Gothoskar
Falk Pollok
Dan Gutfreund
J. Tenenbaum
Vikash K. Mansinghka
19
9
0
04 Aug 2022
Contrastive language and vision learning of general fashion concepts
P. Chia
Giuseppe Attanasio
Federico Bianchi
Silvia Terragni
A. Magalhães
Diogo Gonçalves
C. Greco
Jacopo Tagliabue
CLIP
13
42
0
08 Apr 2022
ToM2C: Target-oriented Multi-agent Communication and Cooperation with Theory of Mind
Yuan-Fang Wang
Fangwei Zhong
Jing Xu
Yizhou Wang
LLMAG
11
66
0
15 Oct 2021
Decoupling Representation Learning from Reinforcement Learning
Adam Stooke
Kimin Lee
Pieter Abbeel
Michael Laskin
SSL
DRL
255
337
0
14 Sep 2020
Offline Reinforcement Learning: Tutorial, Review, and Perspectives on Open Problems
Sergey Levine
Aviral Kumar
George Tucker
Justin Fu
OffRL
GP
321
1,662
0
04 May 2020
Building machines that adapt and compute like brains
Brenden Lake
J. Tenenbaum
AI4CE
FedML
NAI
AILaw
243
893
0
11 Nov 2017
1