Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2102.13156
Cited By
Physics-Integrated Variational Autoencoders for Robust and Interpretable Generative Modeling
25 February 2021
Naoya Takeishi
Alexandros Kalousis
DRL
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Physics-Integrated Variational Autoencoders for Robust and Interpretable Generative Modeling"
14 / 14 papers shown
Title
Learning Physics From Video: Unsupervised Physical Parameter Estimation for Continuous Dynamical Systems
Alejandro Castañeda Garcia
J. C. V. Gemert
Daan Brinks
Nergis Tömen
31
0
0
02 Oct 2024
Generating Physical Dynamics under Priors
Zihan Zhou
Xiaoxue Wang
Tianshu Yu
DiffM
AI4CE
50
0
0
01 Sep 2024
Learning Hybrid Dynamics Models With Simulator-Informed Latent States
K. Ensinger
Sebastian Ziesche
Sebastian Trimpe
22
1
0
06 Sep 2023
Physics-Informed Computer Vision: A Review and Perspectives
C. Banerjee
Kien Nguyen
Clinton Fookes
G. Karniadakis
PINN
AI4CE
30
27
0
29 May 2023
Knowledge-augmented Deep Learning and Its Applications: A Survey
Zijun Cui
Tian Gao
Kartik Talamadupula
Qiang Ji
12
17
0
30 Nov 2022
Deep Grey-Box Modeling With Adaptive Data-Driven Models Toward Trustworthy Estimation of Theory-Driven Models
Naoya Takeishi
Alexandros Kalousis
AAML
10
3
0
24 Oct 2022
Neural Implicit Representations for Physical Parameter Inference from a Single Video
Florian Hofherr
Lukas Koestler
Florian Bernard
Daniel Cremers
AI4CE
27
9
0
29 Apr 2022
Embedded-model flows: Combining the inductive biases of model-free deep learning and explicit probabilistic modeling
Gianluigi Silvestri
Emily Fertig
David A. Moore
L. Ambrogioni
BDL
TPM
AI4CE
23
3
0
12 Oct 2021
Neural Networks with Physics-Informed Architectures and Constraints for Dynamical Systems Modeling
Franck Djeumou
Cyrus Neary
Eric Goubault
S. Putot
Ufuk Topcu
PINN
AI4CE
32
67
0
14 Sep 2021
Physics guided machine learning using simplified theories
Suraj Pawar
Omer San
Burak Aksoylu
Adil Rasheed
T. Kvamsdal
PINN
AI4CE
92
87
0
18 Dec 2020
B-PINNs: Bayesian Physics-Informed Neural Networks for Forward and Inverse PDE Problems with Noisy Data
Liu Yang
Xuhui Meng
George Karniadakis
PINN
170
755
0
13 Mar 2020
Lagrangian Neural Networks
M. Cranmer
S. Greydanus
Stephan Hoyer
Peter W. Battaglia
D. Spergel
S. Ho
PINN
121
419
0
10 Mar 2020
Disentangling Physical Dynamics from Unknown Factors for Unsupervised Video Prediction
Vincent Le Guen
Nicolas Thome
AI4CE
PINN
78
287
0
03 Mar 2020
Hybrid Physical-Deep Learning Model for Astronomical Inverse Problems
F. Lanusse
Peter Melchior
Fred Moolekamp
BDL
14
12
0
09 Dec 2019
1