Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2103.00710
Cited By
Towards Personalized Federated Learning
1 March 2021
A. Tan
Han Yu
Li-zhen Cui
Qiang Yang
FedML
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Towards Personalized Federated Learning"
12 / 12 papers shown
Title
Federated Adapter on Foundation Models: An Out-Of-Distribution Approach
Yiyuan Yang
Guodong Long
Tianyi Zhou
Qinghua Lu
Shanshan Ye
Jing Jiang
OODD
26
0
0
02 May 2025
Privacy-Preserving Personalized Federated Learning for Distributed Photovoltaic Disaggregation under Statistical Heterogeneity
Xiaolu Chen
Chenghao Huang
Yanru Zhang
Hao Wang
27
0
0
25 Apr 2025
Technical Insights and Legal Considerations for Advancing Federated Learning in Bioinformatics
Daniele Malpetti
Marco Scutari
Francesco Gualdi
Jessica van Setten
Sander van der Laan
Saskia Haitjema
Aaron Mark Lee
Isabelle Hering
Francesca Mangili
FedML
AI4CE
55
0
0
12 Mar 2025
When Foundation Model Meets Federated Learning: Motivations, Challenges, and Future Directions
Weiming Zhuang
Chen Chen
Lingjuan Lyu
C. L. P. Chen
Yaochu Jin
Lingjuan Lyu
AIFin
AI4CE
44
83
0
27 Jun 2023
FedHome: Cloud-Edge based Personalized Federated Learning for In-Home Health Monitoring
Qiong Wu
Xu Chen
Zhi Zhou
Junshan Zhang
FedML
107
183
0
14 Dec 2020
Privacy and Robustness in Federated Learning: Attacks and Defenses
Lingjuan Lyu
Han Yu
Xingjun Ma
Chen Chen
Lichao Sun
Jun Zhao
Qiang Yang
Philip S. Yu
FedML
133
244
0
07 Dec 2020
Adaptive Personalized Federated Learning
Yuyang Deng
Mohammad Mahdi Kamani
M. Mahdavi
FedML
149
465
0
30 Mar 2020
Survey of Personalization Techniques for Federated Learning
V. Kulkarni
Milind Kulkarni
Aniruddha Pant
FedML
128
284
0
19 Mar 2020
Threats to Federated Learning: A Survey
Lingjuan Lyu
Han Yu
Qiang Yang
FedML
159
392
0
04 Mar 2020
A Survey on Bias and Fairness in Machine Learning
Ninareh Mehrabi
Fred Morstatter
N. Saxena
Kristina Lerman
Aram Galstyan
SyDa
FaML
267
3,347
0
23 Aug 2019
Improving fairness in machine learning systems: What do industry practitioners need?
Kenneth Holstein
Jennifer Wortman Vaughan
Hal Daumé
Miroslav Dudík
Hanna M. Wallach
FaML
HAI
159
629
0
13 Dec 2018
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
217
9,525
0
09 Mar 2017
1