Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2103.01210
Cited By
Quantifying the Benefit of Using Differentiable Learning over Tangent Kernels
1 March 2021
Eran Malach
Pritish Kamath
Emmanuel Abbe
Nathan Srebro
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Quantifying the Benefit of Using Differentiable Learning over Tangent Kernels"
32 / 32 papers shown
Title
Low-dimensional Functions are Efficiently Learnable under Randomly Biased Distributions
Elisabetta Cornacchia
Dan Mikulincer
Elchanan Mossel
138
1
0
10 Feb 2025
On the Complexity of Learning Sparse Functions with Statistical and Gradient Queries
Nirmit Joshi
Theodor Misiakiewicz
Nathan Srebro
87
7
0
08 Jul 2024
RedEx: Beyond Fixed Representation Methods via Convex Optimization
Amit Daniely
Mariano Schain
Gilad Yehudai
63
0
0
15 Jan 2024
Pareto Frontiers in Neural Feature Learning: Data, Compute, Width, and Luck
Benjamin L. Edelman
Surbhi Goel
Sham Kakade
Eran Malach
Cyril Zhang
89
8
0
07 Sep 2023
Provable Advantage of Curriculum Learning on Parity Targets with Mixed Inputs
Emmanuel Abbe
Elisabetta Cornacchia
Aryo Lotfi
82
11
0
29 Jun 2023
Transformers learn through gradual rank increase
Enric Boix-Adserà
Etai Littwin
Emmanuel Abbe
Samy Bengio
J. Susskind
100
37
0
12 Jun 2023
Patch-level Routing in Mixture-of-Experts is Provably Sample-efficient for Convolutional Neural Networks
Mohammed Nowaz Rabbani Chowdhury
Shuai Zhang
Ming Wang
Sijia Liu
Pin-Yu Chen
MoE
94
19
0
07 Jun 2023
Tight conditions for when the NTK approximation is valid
Enric Boix-Adserà
Etai Littwin
84
0
0
22 May 2023
Provable Guarantees for Nonlinear Feature Learning in Three-Layer Neural Networks
Eshaan Nichani
Alexandru Damian
Jason D. Lee
MLT
201
15
0
11 May 2023
Over-parameterised Shallow Neural Networks with Asymmetrical Node Scaling: Global Convergence Guarantees and Feature Learning
François Caron
Fadhel Ayed
Paul Jung
Hoileong Lee
Juho Lee
Hongseok Yang
129
2
0
02 Feb 2023
A Mathematical Model for Curriculum Learning for Parities
Elisabetta Cornacchia
Elchanan Mossel
75
11
0
31 Jan 2023
Generalization on the Unseen, Logic Reasoning and Degree Curriculum
Emmanuel Abbe
Samy Bengio
Aryo Lotfi
Kevin Rizk
LRM
97
55
0
30 Jan 2023
Learning Single-Index Models with Shallow Neural Networks
A. Bietti
Joan Bruna
Clayton Sanford
M. Song
225
71
0
27 Oct 2022
Neural Networks Efficiently Learn Low-Dimensional Representations with SGD
Alireza Mousavi-Hosseini
Sejun Park
M. Girotti
Ioannis Mitliagkas
Murat A. Erdogdu
MLT
379
50
0
29 Sep 2022
Lazy vs hasty: linearization in deep networks impacts learning schedule based on example difficulty
Thomas George
Guillaume Lajoie
A. Baratin
87
6
0
19 Sep 2022
Hidden Progress in Deep Learning: SGD Learns Parities Near the Computational Limit
Boaz Barak
Benjamin L. Edelman
Surbhi Goel
Sham Kakade
Eran Malach
Cyril Zhang
114
133
0
18 Jul 2022
Making Look-Ahead Active Learning Strategies Feasible with Neural Tangent Kernels
Mohamad Amin Mohamadi
Wonho Bae
Danica J. Sutherland
77
21
0
25 Jun 2022
Intrinsic dimensionality and generalization properties of the
R
\mathcal{R}
R
-norm inductive bias
Navid Ardeshir
Daniel J. Hsu
Clayton Sanford
CML
AI4CE
113
6
0
10 Jun 2022
Identifying good directions to escape the NTK regime and efficiently learn low-degree plus sparse polynomials
Eshaan Nichani
Yunzhi Bai
Jason D. Lee
85
10
0
08 Jun 2022
Long-Tailed Learning Requires Feature Learning
T. Laurent
J. V. Brecht
Xavier Bresson
VLM
69
1
0
29 May 2022
High-dimensional Asymptotics of Feature Learning: How One Gradient Step Improves the Representation
Jimmy Ba
Murat A. Erdogdu
Taiji Suzuki
Zhichao Wang
Denny Wu
Greg Yang
MLT
99
129
0
03 May 2022
An initial alignment between neural network and target is needed for gradient descent to learn
Emmanuel Abbe
Elisabetta Cornacchia
Jan Hązła
Christopher Marquis
120
16
0
25 Feb 2022
Random Feature Amplification: Feature Learning and Generalization in Neural Networks
Spencer Frei
Niladri S. Chatterji
Peter L. Bartlett
MLT
103
30
0
15 Feb 2022
Complexity from Adaptive-Symmetries Breaking: Global Minima in the Statistical Mechanics of Deep Neural Networks
Shaun Li
AI4CE
71
0
0
03 Jan 2022
The staircase property: How hierarchical structure can guide deep learning
Emmanuel Abbe
Enric Boix-Adserà
Matthew Brennan
Guy Bresler
Dheeraj M. Nagaraj
67
56
0
24 Aug 2021
On the Power of Differentiable Learning versus PAC and SQ Learning
Emmanuel Abbe
Pritish Kamath
Eran Malach
Colin Sandon
Nathan Srebro
MLT
125
23
0
09 Aug 2021
What can linearized neural networks actually say about generalization?
Guillermo Ortiz-Jiménez
Seyed-Mohsen Moosavi-Dezfooli
P. Frossard
79
45
0
12 Jun 2021
A self consistent theory of Gaussian Processes captures feature learning effects in finite CNNs
Gadi Naveh
Zohar Ringel
SSL
MLT
91
33
0
08 Jun 2021
Learning a Single Neuron with Bias Using Gradient Descent
Gal Vardi
Gilad Yehudai
Ohad Shamir
MLT
84
17
0
02 Jun 2021
On Energy-Based Models with Overparametrized Shallow Neural Networks
Carles Domingo-Enrich
A. Bietti
Eric Vanden-Eijnden
Joan Bruna
BDL
57
9
0
15 Apr 2021
Noether: The More Things Change, the More Stay the Same
Grzegorz Gluch
R. Urbanke
76
18
0
12 Apr 2021
Spectral Analysis of the Neural Tangent Kernel for Deep Residual Networks
Yuval Belfer
Amnon Geifman
Meirav Galun
Ronen Basri
74
17
0
07 Apr 2021
1