ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2103.01338
  4. Cited By
Acceleration via Fractal Learning Rate Schedules

Acceleration via Fractal Learning Rate Schedules

1 March 2021
Naman Agarwal
Surbhi Goel
Cyril Zhang
ArXivPDFHTML

Papers citing "Acceleration via Fractal Learning Rate Schedules"

9 / 9 papers shown
Title
Negative Stepsizes Make Gradient-Descent-Ascent Converge
Negative Stepsizes Make Gradient-Descent-Ascent Converge
Henry Shugart
Jason M. Altschuler
30
0
0
02 May 2025
From Stability to Chaos: Analyzing Gradient Descent Dynamics in
  Quadratic Regression
From Stability to Chaos: Analyzing Gradient Descent Dynamics in Quadratic Regression
Xuxing Chen
Krishnakumar Balasubramanian
Promit Ghosal
Bhavya Agrawalla
36
7
0
02 Oct 2023
SGD with Large Step Sizes Learns Sparse Features
SGD with Large Step Sizes Learns Sparse Features
Maksym Andriushchenko
Aditya Varre
Loucas Pillaud-Vivien
Nicolas Flammarion
45
56
0
11 Oct 2022
Accelerating Hamiltonian Monte Carlo via Chebyshev Integration Time
Accelerating Hamiltonian Monte Carlo via Chebyshev Integration Time
Jun-Kun Wang
Andre Wibisono
30
9
0
05 Jul 2022
Adaptive Gradient Methods with Local Guarantees
Adaptive Gradient Methods with Local Guarantees
Zhou Lu
Wenhan Xia
Sanjeev Arora
Elad Hazan
ODL
27
9
0
02 Mar 2022
Fractal Structure and Generalization Properties of Stochastic
  Optimization Algorithms
Fractal Structure and Generalization Properties of Stochastic Optimization Algorithms
A. Camuto
George Deligiannidis
Murat A. Erdogdu
Mert Gurbuzbalaban
Umut cSimcsekli
Lingjiong Zhu
33
29
0
09 Jun 2021
Acceleration Methods
Acceleration Methods
Alexandre d’Aspremont
Damien Scieur
Adrien B. Taylor
170
119
0
23 Jan 2021
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp
  Minima
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima
N. Keskar
Dheevatsa Mudigere
J. Nocedal
M. Smelyanskiy
P. T. P. Tang
ODL
308
2,890
0
15 Sep 2016
A Differential Equation for Modeling Nesterov's Accelerated Gradient
  Method: Theory and Insights
A Differential Equation for Modeling Nesterov's Accelerated Gradient Method: Theory and Insights
Weijie Su
Stephen P. Boyd
Emmanuel J. Candes
108
1,154
0
04 Mar 2015
1