ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2103.01895
  4. Cited By
Adversarial Examples can be Effective Data Augmentation for Unsupervised
  Machine Learning

Adversarial Examples can be Effective Data Augmentation for Unsupervised Machine Learning

2 March 2021
Chia-Yi Hsu
Pin-Yu Chen
Songtao Lu
Sijia Liu
Chia-Mu Yu
    AAML
ArXivPDFHTML

Papers citing "Adversarial Examples can be Effective Data Augmentation for Unsupervised Machine Learning"

3 / 3 papers shown
Title
Holistic Adversarial Robustness of Deep Learning Models
Holistic Adversarial Robustness of Deep Learning Models
Pin-Yu Chen
Sijia Liu
AAML
54
16
0
15 Feb 2022
Signal Transformer: Complex-valued Attention and Meta-Learning for
  Signal Recognition
Signal Transformer: Complex-valued Attention and Meta-Learning for Signal Recognition
Yihong Dong
Ying Peng
Muqiao Yang
Songtao Lu
Qingjiang Shi
49
9
0
05 Jun 2021
Disentangling Adversarial Robustness and Generalization
Disentangling Adversarial Robustness and Generalization
David Stutz
Matthias Hein
Bernt Schiele
AAML
OOD
194
277
0
03 Dec 2018
1