ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2103.02062
  4. Cited By
Variance Reduced Training with Stratified Sampling for Forecasting
  Models

Variance Reduced Training with Stratified Sampling for Forecasting Models

2 March 2021
Yucheng Lu
Youngsuk Park
Lifan Chen
Bernie Wang
Christopher De Sa
Dean Phillips Foster
    AI4TS
ArXivPDFHTML

Papers citing "Variance Reduced Training with Stratified Sampling for Forecasting Models"

10 / 10 papers shown
Title
Variance-reduced Zeroth-Order Methods for Fine-Tuning Language Models
Variance-reduced Zeroth-Order Methods for Fine-Tuning Language Models
Tanmay Gautam
Youngsuk Park
Hao Zhou
Parameswaran Raman
Wooseok Ha
43
11
0
11 Apr 2024
Adaptive Sampling for Probabilistic Forecasting under Distribution Shift
Adaptive Sampling for Probabilistic Forecasting under Distribution Shift
Luca Masserano
Syama Sundar Rangapuram
Shubham Kapoor
Rajbir-Singh Nirwan
Youngsuk Park
Michael Bohlke-Schneider
TTA
AI4TS
8
2
0
23 Feb 2023
Coordinating Distributed Example Orders for Provably Accelerated
  Training
Coordinating Distributed Example Orders for Provably Accelerated Training
A. Feder Cooper
Wentao Guo
Khiem Pham
Tiancheng Yuan
Charlie F. Ruan
Yucheng Lu
Chris De Sa
24
6
0
02 Feb 2023
A Survey of Dataset Refinement for Problems in Computer Vision Datasets
A Survey of Dataset Refinement for Problems in Computer Vision Datasets
Zhijing Wan
Zhixiang Wang
CheukTing Chung
Zheng Wang
23
7
0
21 Oct 2022
GraB: Finding Provably Better Data Permutations than Random Reshuffling
GraB: Finding Provably Better Data Permutations than Random Reshuffling
Yucheng Lu
Wentao Guo
Christopher De Sa
FedML
11
16
0
22 May 2022
Robust Probabilistic Time Series Forecasting
Robust Probabilistic Time Series Forecasting
Taeho Yoon
Youngsuk Park
Ernest K. Ryu
Yuyang Wang
AAML
AI4TS
6
18
0
24 Feb 2022
Multivariate Quantile Function Forecaster
Multivariate Quantile Function Forecaster
Kelvin K. Kan
Franccois-Xavier Aubet
Tim Januschowski
Youngsuk Park
Konstantinos Benidis
Lars Ruthotto
Jan Gasthaus
AI4TS
25
22
0
23 Feb 2022
Learning Quantile Functions without Quantile Crossing for
  Distribution-free Time Series Forecasting
Learning Quantile Functions without Quantile Crossing for Distribution-free Time Series Forecasting
Youngsuk Park
Danielle C. Maddix
Franccois-Xavier Aubet
Kelvin K. Kan
Jan Gasthaus
Yuyang Wang
UQCV
AI4TS
84
37
0
12 Nov 2021
Adaptivity of Stochastic Gradient Methods for Nonconvex Optimization
Adaptivity of Stochastic Gradient Methods for Nonconvex Optimization
Samuel Horváth
Lihua Lei
Peter Richtárik
Michael I. Jordan
52
30
0
13 Feb 2020
Improving fairness in machine learning systems: What do industry
  practitioners need?
Improving fairness in machine learning systems: What do industry practitioners need?
Kenneth Holstein
Jennifer Wortman Vaughan
Hal Daumé
Miroslav Dudík
Hanna M. Wallach
FaML
HAI
192
730
0
13 Dec 2018
1