ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2103.03638
  4. Cited By
PRIMA: General and Precise Neural Network Certification via Scalable
  Convex Hull Approximations

PRIMA: General and Precise Neural Network Certification via Scalable Convex Hull Approximations

5 March 2021
Mark Niklas Muller
Gleb Makarchuk
Gagandeep Singh
Markus Püschel
Martin Vechev
ArXivPDFHTML

Papers citing "PRIMA: General and Precise Neural Network Certification via Scalable Convex Hull Approximations"

12 / 62 papers shown
Title
IBP Regularization for Verified Adversarial Robustness via
  Branch-and-Bound
IBP Regularization for Verified Adversarial Robustness via Branch-and-Bound
Alessandro De Palma
Rudy Bunel
Krishnamurthy Dvijotham
M. P. Kumar
Robert Stanforth
AAML
40
17
0
29 Jun 2022
Toward Certified Robustness Against Real-World Distribution Shifts
Toward Certified Robustness Against Real-World Distribution Shifts
Haoze Wu
Teruhiro Tagomori
Alexander Robey
Fengjun Yang
Nikolai Matni
George Pappas
Hamed Hassani
C. Păsăreanu
Clark W. Barrett
AAML
OOD
35
18
0
08 Jun 2022
Chordal Sparsity for SDP-based Neural Network Verification
Chordal Sparsity for SDP-based Neural Network Verification
Anton Xue
Lars Lindemann
Rajeev Alur
21
1
0
07 Jun 2022
Neural Network Verification with Proof Production
Neural Network Verification with Proof Production
Omri Isac
Clark W. Barrett
M. Zhang
Guy Katz
AAML
31
20
0
01 Jun 2022
(De-)Randomized Smoothing for Decision Stump Ensembles
(De-)Randomized Smoothing for Decision Stump Ensembles
Miklós Z. Horváth
Mark Niklas Muller
Marc Fischer
Martin Vechev
14
3
0
27 May 2022
Complete Verification via Multi-Neuron Relaxation Guided
  Branch-and-Bound
Complete Verification via Multi-Neuron Relaxation Guided Branch-and-Bound
Claudio Ferrari
Mark Niklas Muller
Nikola Jovanović
Martin Vechev
28
81
0
30 Apr 2022
Abstract Interpretation of Fixpoint Iterators with Applications to
  Neural Networks
Abstract Interpretation of Fixpoint Iterators with Applications to Neural Networks
Mark Niklas Muller
Marc Fischer
Robin Staab
Martin Vechev
13
3
0
14 Oct 2021
SoK: Certified Robustness for Deep Neural Networks
SoK: Certified Robustness for Deep Neural Networks
Linyi Li
Tao Xie
Bo-wen Li
AAML
16
128
0
09 Sep 2020
CNN-Cert: An Efficient Framework for Certifying Robustness of
  Convolutional Neural Networks
CNN-Cert: An Efficient Framework for Certifying Robustness of Convolutional Neural Networks
Akhilan Boopathy
Tsui-Wei Weng
Pin-Yu Chen
Sijia Liu
Luca Daniel
AAML
101
138
0
29 Nov 2018
Output Reachable Set Estimation and Verification for Multi-Layer Neural
  Networks
Output Reachable Set Estimation and Verification for Multi-Layer Neural Networks
Weiming Xiang
Hoang-Dung Tran
Taylor T. Johnson
72
292
0
09 Aug 2017
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Guy Katz
Clark W. Barrett
D. Dill
Kyle D. Julian
Mykel Kochenderfer
AAML
226
1,835
0
03 Feb 2017
Safety Verification of Deep Neural Networks
Safety Verification of Deep Neural Networks
Xiaowei Huang
M. Kwiatkowska
Sen Wang
Min Wu
AAML
178
931
0
21 Oct 2016
Previous
12