Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2103.03638
Cited By
PRIMA: General and Precise Neural Network Certification via Scalable Convex Hull Approximations
5 March 2021
Mark Niklas Muller
Gleb Makarchuk
Gagandeep Singh
Markus Püschel
Martin Vechev
Re-assign community
ArXiv
PDF
HTML
Papers citing
"PRIMA: General and Precise Neural Network Certification via Scalable Convex Hull Approximations"
50 / 62 papers shown
Title
Adaptive Branch-and-Bound Tree Exploration for Neural Network Verification
Kota Fukuda
Guanqin Zhang
Zhenya Zhang
Yulei Sui
Jianjun Zhao
45
0
0
02 May 2025
Support is All You Need for Certified VAE Training
Changming Xu
Debangshu Banerjee
Deepak Vasisht
Gagandeep Singh
AAML
39
0
0
16 Apr 2025
Proof-Driven Clause Learning in Neural Network Verification
Omri Isac
Idan Refaeli
Haoze Wu
Clark W. Barrett
Guy Katz
61
0
0
15 Mar 2025
Guarding the Privacy of Label-Only Access to Neural Network Classifiers via iDP Verification
Anan Kabaha
Dana Drachsler-Cohen
AAML
43
0
0
23 Feb 2025
Tightening convex relaxations of trained neural networks: a unified approach for convex and S-shaped activations
Pablo Carrasco
Gonzalo Muñoz
59
2
0
30 Oct 2024
Towards Universal Certified Robustness with Multi-Norm Training
Enyi Jiang
Gagandeep Singh
Gagandeep Singh
AAML
55
1
0
03 Oct 2024
Better Verified Explanations with Applications to Incorrectness and Out-of-Distribution Detection
Min Wu
Xiaofu Li
Haoze Wu
Clark Barrett
28
0
0
04 Sep 2024
Towards General Robustness Verification of MaxPool-based Convolutional Neural Networks via Tightening Linear Approximation
Yuan Xiao
Shiqing Ma
Juan Zhai
Chunrong Fang
Jinyuan Jia
Zhenyu Chen
AAML
45
1
0
02 Jun 2024
Neural Network Verification with Branch-and-Bound for General Nonlinearities
Zhouxing Shi
Qirui Jin
Zico Kolter
Suman Jana
Cho-Jui Hsieh
Huan Zhang
39
11
0
31 May 2024
Probabilistic Verification of Neural Networks using Branch and Bound
David Boetius
Stefan Leue
Tobias Sutter
39
0
0
27 May 2024
Uncertainty Measurement of Deep Learning System based on the Convex Hull of Training Sets
Hyekyoung Hwang
Jitae Shin
AAML
UQCV
24
0
0
25 May 2024
Monitizer: Automating Design and Evaluation of Neural Network Monitors
Muqsit Azeem
Marta Grobelna
Sudeep Kanav
Jan Křetínský
Stefanie Mohr
Sabine Rieder
39
2
0
16 May 2024
Cross-Input Certified Training for Universal Perturbations
Changming Xu
Gagandeep Singh
AAML
28
2
0
15 May 2024
Formal Verification of Graph Convolutional Networks with Uncertain Node Features and Uncertain Graph Structure
Tobias Ladner
Michael Eichelbeck
Matthias Althoff
GNN
59
0
0
23 Apr 2024
DeepCDCL: An CDCL-based Neural Network Verification Framework
Zongxin Liu
Pengfei Yang
Lijun Zhang
Xiaowei Huang
22
3
0
12 Mar 2024
Verifying message-passing neural networks via topology-based bounds tightening
Christopher Hojny
Shiqiang Zhang
Juan S. Campos
Ruth Misener
AAML
44
6
0
21 Feb 2024
Marabou 2.0: A Versatile Formal Analyzer of Neural Networks
Haoze Wu
Omri Isac
Aleksandar Zeljić
Teruhiro Tagomori
M. Daggitt
...
Min Wu
Min Zhang
Ekaterina Komendantskaya
Guy Katz
Clark W. Barrett
36
30
0
25 Jan 2024
Efficient compilation of expressive problem space specifications to neural network solvers
M. Daggitt
Wen Kokke
R. Atkey
19
2
0
24 Jan 2024
Vehicle: Bridging the Embedding Gap in the Verification of Neuro-Symbolic Programs
M. Daggitt
Wen Kokke
R. Atkey
Natalia Slusarz
Luca Arnaboldi
Ekaterina Komendantskaya
NAI
31
10
0
12 Jan 2024
Robustness Assessment of a Runway Object Classifier for Safe Aircraft Taxiing
Y. Elboher
R. Elsaleh
Omri Isac
Mélanie Ducoffe
Audrey Galametz
Guillaume Povéda
Ryma Boumazouza
Noémie Cohen
Guy Katz
AAML
28
4
0
08 Jan 2024
STR-Cert: Robustness Certification for Deep Text Recognition on Deep Learning Pipelines and Vision Transformers
Daqian Shao
Lukas Fesser
Marta Z. Kwiatkowska
26
0
0
28 Nov 2023
Expressivity of ReLU-Networks under Convex Relaxations
Maximilian Baader
Mark Niklas Muller
Yuhao Mao
Martin Vechev
20
3
0
07 Nov 2023
Pixel-wise Smoothing for Certified Robustness against Camera Motion Perturbations
Hanjiang Hu
Zuxin Liu
Linyi Li
Jiacheng Zhu
Ding Zhao
30
0
0
22 Sep 2023
Expediting Neural Network Verification via Network Reduction
Yuyi Zhong
Ruiwei Wang
Siau-Cheng Khoo
AAML
20
2
0
07 Aug 2023
Formally Explaining Neural Networks within Reactive Systems
Shahaf Bassan
Guy Amir
Davide Corsi
Idan Refaeli
Guy Katz
AAML
19
15
0
31 Jul 2023
A DPLL(T) Framework for Verifying Deep Neural Networks
Hai V. Duong
Thanh-Dat Nguyen
Matthew B. Dwyer
23
8
0
17 Jul 2023
Understanding Certified Training with Interval Bound Propagation
Yuhao Mao
Mark Niklas Muller
Marc Fischer
Martin Vechev
AAML
41
14
0
17 Jun 2023
Precise and Generalized Robustness Certification for Neural Networks
Yuanyuan Yuan
Shuai Wang
Z. Su
AAML
35
2
0
11 Jun 2023
From Robustness to Explainability and Back Again
Xuanxiang Huang
João Marques-Silva
32
10
0
05 Jun 2023
DelBugV: Delta-Debugging Neural Network Verifiers
R. Elsaleh
Guy Katz
36
1
0
29 May 2023
A Tale of Two Approximations: Tightening Over-Approximation for DNN Robustness Verification via Under-Approximation
Zhiyi Xue
Si Liu
Zhaodi Zhang
Yiting Wu
M. Zhang
AAML
18
2
0
26 May 2023
Expressive Losses for Verified Robustness via Convex Combinations
Alessandro De Palma
Rudy Bunel
Krishnamurthy Dvijotham
M. P. Kumar
Robert Stanforth
A. Lomuscio
AAML
28
11
0
23 May 2023
TAPS: Connecting Certified and Adversarial Training
Yuhao Mao
Mark Niklas Muller
Marc Fischer
Martin Vechev
AAML
18
10
0
08 May 2023
Fully Automatic Neural Network Reduction for Formal Verification
Tobias Ladner
Matthias Althoff
AAML
26
3
0
03 May 2023
Efficient MILP Decomposition in Quantum Computing for ReLU Network Robustness
Nicola Franco
Thomas Wollschläger
Benedikt Poggel
Stephan Günnemann
J. Lorenz
11
9
0
30 Apr 2023
Architecture-Preserving Provable Repair of Deep Neural Networks
Zhe Tao
Stephanie Nawas
Jacqueline Mitchell
Aditya V. Thakur
AAML
21
9
0
07 Apr 2023
Optimization and Optimizers for Adversarial Robustness
Hengyue Liang
Buyun Liang
Le Peng
Ying Cui
Tim Mitchell
Ju Sun
AAML
18
5
0
23 Mar 2023
Efficient Certified Training and Robustness Verification of Neural ODEs
Mustafa Zeqiri
Mark Niklas Muller
Marc Fischer
Martin Vechev
AAML
27
2
0
09 Mar 2023
Reliability Assurance for Deep Neural Network Architectures Against Numerical Defects
Linyi Li
Yuhao Zhang
Luyao Ren
Yingfei Xiong
Tao Xie
22
7
0
13 Feb 2023
gRoMA: a Tool for Measuring the Global Robustness of Deep Neural Networks
Natan Levy
Raz Yerushalmi
Guy Katz
AAML
12
1
0
05 Jan 2023
VeriX: Towards Verified Explainability of Deep Neural Networks
Min Wu
Haoze Wu
Clark W. Barrett
AAML
36
10
0
02 Dec 2022
DualApp: Tight Over-Approximation for Neural Network Robustness Verification via Under-Approximation
Yiting Wu
Zhaodi Zhang
Zhiyi Xue
Si Liu
M. Zhang
AAML
16
0
0
21 Nov 2022
Efficiently Finding Adversarial Examples with DNN Preprocessing
Avriti Chauhan
Mohammad Afzal
Hrishikesh Karmarkar
Y. Elboher
Kumar Madhukar
Guy Katz
AAML
11
0
0
16 Nov 2022
Tighter Abstract Queries in Neural Network Verification
Elazar Cohen
Y. Elboher
Clark W. Barrett
Guy Katz
22
5
0
23 Oct 2022
Towards Global Neural Network Abstractions with Locally-Exact Reconstruction
Edoardo Manino
I. Bessa
Lucas C. Cordeiro
19
1
0
21 Oct 2022
Certified Training: Small Boxes are All You Need
Mark Niklas Muller
Franziska Eckert
Marc Fischer
Martin Vechev
AAML
31
45
0
10 Oct 2022
A Scalable, Interpretable, Verifiable & Differentiable Logic Gate Convolutional Neural Network Architecture From Truth Tables
Adrien Benamira
Tristan Guérand
Thomas Peyrin
Trevor Yap
Bryan Hooi
32
1
0
18 Aug 2022
On Optimizing Back-Substitution Methods for Neural Network Verification
Tom Zelazny
Haoze Wu
Clark W. Barrett
Guy Katz
AAML
36
5
0
16 Aug 2022
Neural Network Verification using Residual Reasoning
Y. Elboher
Elazar Cohen
Guy Katz
LRM
19
16
0
05 Aug 2022
Verifying Attention Robustness of Deep Neural Networks against Semantic Perturbations
S. Munakata
Caterina Urban
Haruki Yokoyama
Koji Yamamoto
Kazuki Munakata
AAML
10
4
0
13 Jul 2022
1
2
Next