Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2103.05045
Cited By
Size-Invariant Graph Representations for Graph Classification Extrapolations
8 March 2021
Beatrice Bevilacqua
Yangze Zhou
Bruno Ribeiro
OOD
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Size-Invariant Graph Representations for Graph Classification Extrapolations"
14 / 14 papers shown
Title
A Survey of Deep Graph Learning under Distribution Shifts: from Graph Out-of-Distribution Generalization to Adaptation
Kexin Zhang
Shuhan Liu
Song Wang
Weili Shi
Chen Chen
Pan Li
Sheng R. Li
Jundong Li
Kaize Ding
OOD
43
2
0
25 Oct 2024
Graph Invariant Learning with Subgraph Co-mixup for Out-Of-Distribution Generalization
Tianrui Jia
Haoyang Li
Cheng Yang
Tao Tao
Chuan Shi
OOD
7
17
0
18 Dec 2023
GraphGLOW: Universal and Generalizable Structure Learning for Graph Neural Networks
Wentao Zhao
Qitian Wu
Chenxiao Yang
Junchi Yan
4
12
0
20 Jun 2023
The CLRS Algorithmic Reasoning Benchmark
Petar Velivcković
Adria Puigdomenech Badia
David Budden
Razvan Pascanu
Andrea Banino
Mikhail Dashevskiy
R. Hadsell
Charles Blundell
151
86
0
31 May 2022
OOD Link Prediction Generalization Capabilities of Message-Passing GNNs in Larger Test Graphs
Yangze Zhou
Gitta Kutyniok
Bruno Ribeiro
OODD
AI4CE
64
37
0
30 May 2022
Reconstruction for Powerful Graph Representations
Leonardo Cotta
Christopher Morris
Bruno Ribeiro
AI4CE
117
78
0
01 Oct 2021
Combinatorial optimization and reasoning with graph neural networks
Quentin Cappart
Didier Chételat
Elias Boutros Khalil
Andrea Lodi
Christopher Morris
Petar Velickovic
AI4CE
28
344
0
18 Feb 2021
Walking Out of the Weisfeiler Leman Hierarchy: Graph Learning Beyond Message Passing
Jan Toenshoff
Martin Ritzert
Hinrikus Wolf
Martin Grohe
GNN
68
21
0
17 Feb 2021
From Local Structures to Size Generalization in Graph Neural Networks
Gilad Yehudai
Ethan Fetaya
E. Meirom
Gal Chechik
Haggai Maron
GNN
AI4CE
125
112
0
17 Oct 2020
A Survey on The Expressive Power of Graph Neural Networks
Ryoma Sato
159
158
0
09 Mar 2020
Out-of-Distribution Generalization via Risk Extrapolation (REx)
David M. Krueger
Ethan Caballero
J. Jacobsen
Amy Zhang
Jonathan Binas
Dinghuai Zhang
Rémi Le Priol
Aaron Courville
OOD
212
888
0
02 Mar 2020
Representation Learning on Graphs with Jumping Knowledge Networks
Keyulu Xu
Chengtao Li
Yonglong Tian
Tomohiro Sonobe
Ken-ichi Kawarabayashi
Stefanie Jegelka
GNN
217
1,726
0
09 Jun 2018
Interaction Networks for Learning about Objects, Relations and Physics
Peter W. Battaglia
Razvan Pascanu
Matthew Lai
Danilo Jimenez Rezende
Koray Kavukcuoglu
AI4CE
OCL
PINN
GNN
252
1,394
0
01 Dec 2016
Learning Representations for Counterfactual Inference
Fredrik D. Johansson
Uri Shalit
David Sontag
CML
OOD
BDL
205
713
0
12 May 2016
1