ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2103.06595
  4. Cited By
Bump Hunting in Latent Space

Bump Hunting in Latent Space

11 March 2021
Blaž Bortolato
B. Dillon
J. Kamenik
Aleks Smolkovič
    DRL
ArXivPDFHTML

Papers citing "Bump Hunting in Latent Space"

8 / 8 papers shown
Title
Detecting Localized Density Anomalies in Multivariate Data via Coin-Flip Statistics
Detecting Localized Density Anomalies in Multivariate Data via Coin-Flip Statistics
Sebastian Springer
Andre Scaffidi
Maximilian Autenrieth
Gabriella Contardo
Alessandro Laio
R. Trotta
H. Haario
37
0
0
31 Mar 2025
Anomalies, Representations, and Self-Supervision
Anomalies, Representations, and Self-Supervision
B. Dillon
Luigi Favaro
Friedrich Feiden
Tanmoy Modak
Tilman Plehn
21
9
0
11 Jan 2023
A Detailed Study of Interpretability of Deep Neural Network based Top
  Taggers
A Detailed Study of Interpretability of Deep Neural Network based Top Taggers
Ayush Khot
Mark S. Neubauer
Avik Roy
AAML
33
16
0
09 Oct 2022
Particle Graph Autoencoders and Differentiable, Learned Energy Mover's
  Distance
Particle Graph Autoencoders and Differentiable, Learned Energy Mover's Distance
S. Tsan
Raghav Kansal
Anthony Aportela
Daniel Madrigal Diaz
Javier Mauricio Duarte
S. Krishna
Farouk Mokhtar
J. Vlimant
M. Pierini
18
19
0
24 Nov 2021
Challenges for Unsupervised Anomaly Detection in Particle Physics
Challenges for Unsupervised Anomaly Detection in Particle Physics
Katherine Fraser
S. Homiller
Rashmish K. Mishra
B. Ostdiek
M. Schwartz
DRL
27
43
0
13 Oct 2021
Latent Space Refinement for Deep Generative Models
Latent Space Refinement for Deep Generative Models
R. Winterhalder
Marco Bellagente
Benjamin Nachman
BDL
GAN
DRL
DiffM
10
27
0
01 Jun 2021
Autoencoders for unsupervised anomaly detection in high energy physics
Autoencoders for unsupervised anomaly detection in high energy physics
Thorben Finke
Michael Krämer
A. Morandini
A. Mück
I. Oleksiyuk
13
83
0
19 Apr 2021
Comparing Weak- and Unsupervised Methods for Resonant Anomaly Detection
Comparing Weak- and Unsupervised Methods for Resonant Anomaly Detection
J. Collins
P. Martín-Ramiro
Benjamin Nachman
David Shih
11
44
0
05 Apr 2021
1