Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2103.09655
Cited By
The Old and the New: Can Physics-Informed Deep-Learning Replace Traditional Linear Solvers?
12 March 2021
Stefano Markidis
PINN
Re-assign community
ArXiv
PDF
HTML
Papers citing
"The Old and the New: Can Physics-Informed Deep-Learning Replace Traditional Linear Solvers?"
49 / 49 papers shown
Title
Deterministic Global Optimization of the Acquisition Function in Bayesian Optimization: To Do or Not To Do?
Anastasia S. Georgiou
Daniel Jungen
Luise F. Kaven
Verena Hunstig
Constantine Frangakis
Ioannis G. Kevrekidis
Alexander Mitsos
33
0
0
05 Mar 2025
REAct: Rational Exponential Activation for Better Learning and Generalization in PINNs
Sourav Mishra
Shreya Hallikeri
Suresh Sundaram
AI4CE
34
0
0
04 Mar 2025
Learning Discontinuous Galerkin Solutions to Elliptic Problems via Small Linear Convolutional Neural Networks
A. Celaya
Yimo Wang
David T. Fuentes
Beatrice Riviere
38
0
0
12 Feb 2025
Integrating Physics-Informed Deep Learning and Numerical Methods for Robust Dynamics Discovery and Parameter Estimation
Caitlin Ho
Andrea Arnold
AI4CE
PINN
26
0
0
05 Oct 2024
Component Fourier Neural Operator for Singularly Perturbed Differential Equations
Ye Li
Ting Du
Yiwen Pang
Zhongyi Huang
16
1
0
07 Sep 2024
Adapting Physics-Informed Neural Networks for Bifurcation Detection in Ecological Migration Models
Lujie Yin
Xing Lv
PINN
15
0
0
01 Sep 2024
General-Kindred Physics-Informed Neural Network to the Solutions of Singularly Perturbed Differential Equations
Sen Wang
Peizhi Zhao
Qinglong Ma
Tao Song
PINN
18
3
0
27 Aug 2024
Physics-Informed Neural Networks for Dynamic Process Operations with Limited Physical Knowledge and Data
M. Velioglu
Song Zhai
Sophia Rupprecht
Alexander Mitsos
Andreas Jupke
Manuel Dahmen
PINN
AI4CE
44
4
0
03 Jun 2024
Kronecker-Factored Approximate Curvature for Physics-Informed Neural Networks
Felix Dangel
Johannes Müller
Marius Zeinhofer
ODL
21
6
0
24 May 2024
Physics-Informed Machine Learning On Polar Ice: A Survey
Zesheng Liu
Younghyun Koo
Maryam Rahnemoonfar
PINN
AI4CE
29
1
0
30 Apr 2024
Toward a Better Understanding of Fourier Neural Operators: Analysis and Improvement from a Spectral Perspective
Shaoxiang Qin
Fuyuan Lyu
Wenhui Peng
Dingyang Geng
Ju Wang
Naiping Gao
Xue Liu
L. Wang
AI4CE
24
3
0
10 Apr 2024
Data assimilation and parameter identification for water waves using the nonlinear Schrödinger equation and physics-informed neural networks
Svenja Ehlers
Niklas A. Wagner
Annamaria Scherzl
Marco Klein
Norbert Hoffmann
M. Stender
11
1
0
08 Jan 2024
Data-Driven Physics-Informed Neural Networks: A Digital Twin Perspective
Sunwoong Yang
Hojin Kim
Y. Hong
K. Yee
R. Maulik
Namwoo Kang
PINN
AI4CE
18
17
0
05 Jan 2024
Physics-Informed Neural Networks for High-Frequency and Multi-Scale Problems using Transfer Learning
Abdul Hannan Mustajab
Hao Lyu
Z. Rizvi
Frank Wuttke
AI4CE
PINN
8
9
0
05 Jan 2024
Integration of physics-informed operator learning and finite element method for parametric learning of partial differential equations
Shahed Rezaei
Ahmad Moeineddin
Michael Kaliske
Markus Apel
AI4CE
25
4
0
04 Jan 2024
PINN surrogate of Li-ion battery models for parameter inference. Part I: Implementation and multi-fidelity hierarchies for the single-particle model
M. Hassanaly
Peter J. Weddle
Ryan N. King
Subhayan De
Alireza Doostan
Corey R. Randall
Eric J. Dufek
Andrew M. Colclasure
Kandler Smith
15
7
0
28 Dec 2023
A conservative hybrid physics-informed neural network method for Maxwell-Ampère-Nernst-Planck equations
Cheng Chang
Zhouping Xin
Tieyong Zeng
13
0
0
10 Dec 2023
Grad-Shafranov equilibria via data-free physics informed neural networks
Byoungchan Jang
A. Kaptanoglu
Rahul Gaur
Shaw Pan
Matt Landreman
W. Dorland
PINN
18
2
0
22 Nov 2023
Deep Learning in Deterministic Computational Mechanics
L. Herrmann
Stefan Kollmannsberger
AI4CE
PINN
35
0
0
27 Sep 2023
Breaking Boundaries: Distributed Domain Decomposition with Scalable Physics-Informed Neural PDE Solvers
Arthur Feeney
Zitong Li
Ramin Bostanabad
Aparna Chandramowlishwaran
AI4CE
13
1
0
28 Aug 2023
Solving Forward and Inverse Problems of Contact Mechanics using Physics-Informed Neural Networks
T. Şahin
M. Danwitz
A. Popp
PINN
14
19
0
24 Aug 2023
Physics-Informed Boundary Integral Networks (PIBI-Nets): A Data-Driven Approach for Solving Partial Differential Equations
Monika Nagy-Huber
Volker Roth
AI4CE
PINN
22
3
0
18 Aug 2023
A Critical Review of Physics-Informed Machine Learning Applications in Subsurface Energy Systems
Abdeldjalil Latrach
M. L. Malki
Misael Morales
Mohamed Mehana
M. Rabiei
PINN
AI4CE
16
28
0
06 Aug 2023
Spectral-Bias and Kernel-Task Alignment in Physically Informed Neural Networks
Inbar Seroussi
Asaf Miron
Z. Ringel
PINN
32
0
0
12 Jul 2023
PINNacle: A Comprehensive Benchmark of Physics-Informed Neural Networks for Solving PDEs
Zhongkai Hao
J. Yao
Chang Su
Hang Su
Ziao Wang
...
Zeyu Xia
Yichi Zhang
Songming Liu
Lu Lu
Jun Zhu
PINN
20
29
0
15 Jun 2023
Towards a Machine-Learned Poisson Solver for Low-Temperature Plasma Simulations in Complex Geometries
Ihda Chaerony Siffa
M. Becker
K. Weltmann
J. Trieschmann
19
2
0
13 Jun 2023
Error convergence and engineering-guided hyperparameter search of PINNs: towards optimized I-FENN performance
Panos Pantidis
Habiba Eldababy
Christopher Miguel Tagle
M. Mobasher
21
20
0
03 Mar 2023
LSA-PINN: Linear Boundary Connectivity Loss for Solving PDEs on Complex Geometry
Jian Cheng Wong
P. Chiu
C. Ooi
M. Dao
Yew-Soon Ong
AI4CE
PINN
13
10
0
03 Feb 2023
Spatio-Temporal Super-Resolution of Dynamical Systems using Physics-Informed Deep-Learning
Rajat Arora
Ankit Shrivastava
AI4CE
25
4
0
08 Dec 2022
Physics-guided Data Augmentation for Learning the Solution Operator of Linear Differential Equations
Yemo Li
Yiwen Pang
Bin Shan
AI4CE
18
3
0
08 Dec 2022
Bayesian Physics Informed Neural Networks for Data Assimilation and Spatio-Temporal Modelling of Wildfires
J. Dabrowski
D. Pagendam
J. Hilton
Conrad Sanderson
Dan MacKinlay
C. Huston
Andrew Bolt
Petra Kuhnert
PINN
18
16
0
02 Dec 2022
On the Compatibility between Neural Networks and Partial Differential Equations for Physics-informed Learning
Kuangdai Leng
Jeyan Thiyagalingam
PINN
9
2
0
01 Dec 2022
Physics-informed Neural Networks with Unknown Measurement Noise
Philipp Pilar
Niklas Wahlström
PINN
18
6
0
28 Nov 2022
Scaling transformation of the multimode nonlinear Schrödinger equation for physics-informed neural networks
I. Chuprov
D. Efremenko
Jiexing Gao
P. Anisimov
V. Zemlyakov
11
0
0
29 Sep 2022
On Physics-Informed Neural Networks for Quantum Computers
Stefano Markidis
PINN
29
18
0
28 Sep 2022
Gradient-Enhanced Physics-Informed Neural Networks for Power Systems Operational Support
M. Mohammadian
K. Baker
Ferdinando Fioretto
PINN
AI4CE
11
21
0
21 Jun 2022
Physical Activation Functions (PAFs): An Approach for More Efficient Induction of Physics into Physics-Informed Neural Networks (PINNs)
J. Abbasi
Paal Ostebo Andersen
PINN
AI4CE
19
13
0
29 May 2022
Auto-PINN: Understanding and Optimizing Physics-Informed Neural Architecture
Yicheng Wang
Xiaotian Han
Chia-Yuan Chang
Daochen Zha
U. Braga-Neto
Xia Hu
PINN
AI4CE
9
23
0
27 May 2022
Hyper-parameter tuning of physics-informed neural networks: Application to Helmholtz problems
Paul Escapil-Inchauspé
G. A. Ruz
24
32
0
13 May 2022
Do ReLU Networks Have An Edge When Approximating Compactly-Supported Functions?
Anastasis Kratsios
Behnoosh Zamanlooy
MLT
49
3
0
24 Apr 2022
Improved Training of Physics-Informed Neural Networks with Model Ensembles
Katsiaryna Haitsiukevich
Alexander Ilin
PINN
22
23
0
11 Apr 2022
Physics-informed neural networks for non-Newtonian fluid thermo-mechanical problems: an application to rubber calendering process
Thi Nguyen Khoa Nguyen
T. Dairay
Raphael Meunier
Mathilde Mougeot
PINN
AI4CE
67
29
0
31 Jan 2022
Asymptotic self-similar blow-up profile for three-dimensional axisymmetric Euler equations using neural networks
Yao Wang
Chen Lai
J. Gómez-Serrano
T. Buckmaster
14
17
0
18 Jan 2022
Scientific Machine Learning through Physics-Informed Neural Networks: Where we are and What's next
S. Cuomo
Vincenzo Schiano Di Cola
F. Giampaolo
G. Rozza
Maizar Raissi
F. Piccialli
PINN
18
1,162
0
14 Jan 2022
Enhancing Computational Fluid Dynamics with Machine Learning
Ricardo Vinuesa
Steven L. Brunton
AI4CE
98
353
0
05 Oct 2021
Learning in Sinusoidal Spaces with Physics-Informed Neural Networks
Jian Cheng Wong
C. Ooi
Abhishek Gupta
Yew-Soon Ong
AI4CE
PINN
SSL
16
76
0
20 Sep 2021
A Deep Learning-Based Particle-in-Cell Method for Plasma Simulations
Xavier Aguilar
Stefano Markidis
13
16
0
05 Jul 2021
MeshfreeFlowNet: A Physics-Constrained Deep Continuous Space-Time Super-Resolution Framework
C. Jiang
S. Esmaeilzadeh
Kamyar Azizzadenesheli
K. Kashinath
Mustafa A. Mustafa
H. Tchelepi
P. Marcus
P. Prabhat
Anima Anandkumar
AI4CE
182
140
0
01 May 2020
hp-VPINNs: Variational Physics-Informed Neural Networks With Domain Decomposition
E. Kharazmi
Zhongqiang Zhang
George Karniadakis
117
506
0
11 Mar 2020
1