Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2103.10005
Cited By
Neural Network Attribution Methods for Problems in Geoscience: A Novel Synthetic Benchmark Dataset
18 March 2021
Antonios Mamalakis
I. Ebert‐Uphoff
E. Barnes
OOD
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Neural Network Attribution Methods for Problems in Geoscience: A Novel Synthetic Benchmark Dataset"
16 / 16 papers shown
Title
Tackling the Accuracy-Interpretability Trade-off in a Hierarchy of Machine Learning Models for the Prediction of Extreme Heatwaves
Alessandro Lovo
Amaury Lancelin
Corentin Herbert
Freddy Bouchet
AI4CE
23
0
0
01 Oct 2024
Huge Ensembles Part II: Properties of a Huge Ensemble of Hindcasts Generated with Spherical Fourier Neural Operators
Ankur Mahesh
William D. Collins
Boris Bonev
Noah D. Brenowitz
Y. Cohen
...
Michael S. Pritchard
David Pruitt
Mark Risser
Shashank Subramanian
Jared Willard
73
4
0
02 Aug 2024
Applications of Explainable artificial intelligence in Earth system science
Feini Huang
Shijie Jiang
Lu Li
Yongkun Zhang
Ye Zhang
Ruqing Zhang
Qingliang Li
Danxi Li
Wei Shangguan
Yongjiu Dai
30
2
0
12 Jun 2024
The Explanation Necessity for Healthcare AI
Michail Mamalakis
Héloïse de Vareilles
Graham K Murray
Pietro Lio'
J. Suckling
33
2
0
31 May 2024
Solving the enigma: Enhancing faithfulness and comprehensibility in explanations of deep networks
Michail Mamalakis
Antonios Mamalakis
Ingrid Agartz
L. Morch-Johnsen
Graham K Murray
J. Suckling
Pietro Lio'
48
0
0
16 May 2024
An explainable three dimension framework to uncover learning patterns: A unified look in variable sulci recognition
Michail Mamalakis
Héloïse de Vareilles
Atheer AI-Manea
Samantha C. Mitchell
Ingrid Arartz
...
Jane R. Garrison
Jon S. Simons
Pietro Lio'
J. Suckling
Graham K Murray
8
1
0
02 Sep 2023
Finding the right XAI method -- A Guide for the Evaluation and Ranking of Explainable AI Methods in Climate Science
P. Bommer
M. Kretschmer
Anna Hedström
Dilyara Bareeva
Marina M.-C. Höhne
29
38
0
01 Mar 2023
Comparing Explanation Methods for Traditional Machine Learning Models Part 2: Quantifying Model Explainability Faithfulness and Improvements with Dimensionality Reduction
Montgomery Flora
Corey K. Potvin
A. McGovern
Shawn Handler
FAtt
13
4
0
18 Nov 2022
Comparing Explanation Methods for Traditional Machine Learning Models Part 1: An Overview of Current Methods and Quantifying Their Disagreement
Montgomery Flora
Corey K. Potvin
A. McGovern
Shawn Handler
FAtt
11
16
0
16 Nov 2022
Lazy Estimation of Variable Importance for Large Neural Networks
Yue Gao
Abby Stevens
Rebecca Willett
Garvesh Raskutti
27
4
0
19 Jul 2022
Analysis, Characterization, Prediction and Attribution of Extreme Atmospheric Events with Machine Learning: a Review
S. Salcedo-Sanz
Jorge Pérez-Aracil
G. Ascenso
Javier Del Ser
D. Casillas-Pérez
...
D. Barriopedro
R. García-Herrera
Marcello Restelli
M. Giuliani
A. Castelletti
AI4Cl
15
13
0
03 Jun 2022
Explainable Artificial Intelligence for Bayesian Neural Networks: Towards trustworthy predictions of ocean dynamics
Mariana C. A. Clare
Maike Sonnewald
Redouane Lguensat
Julie Deshayes
Venkatramani Balaji
BDL
13
31
0
30 Apr 2022
Forecasting large-scale circulation regimes using deformable convolutional neural networks and global spatiotemporal climate data
A. H. Nielsen
Alexandros Iosifidis
H. Karstoft
AI4Cl
AI4CE
13
6
0
10 Feb 2022
Investigating the fidelity of explainable artificial intelligence methods for applications of convolutional neural networks in geoscience
Antonios Mamalakis
E. Barnes
I. Ebert‐Uphoff
19
73
0
07 Feb 2022
Controlled abstention neural networks for identifying skillful predictions for classification problems
E. Barnes
R. Barnes
13
8
0
16 Apr 2021
Controlled abstention neural networks for identifying skillful predictions for regression problems
E. Barnes
R. Barnes
23
22
0
16 Apr 2021
1