ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2103.13701
  4. Cited By
ECINN: Efficient Counterfactuals from Invertible Neural Networks
v1v2 (latest)

ECINN: Efficient Counterfactuals from Invertible Neural Networks

25 March 2021
Frederik Hvilshoj
Alexandros Iosifidis
Ira Assent
    BDL
ArXiv (abs)PDFHTML

Papers citing "ECINN: Efficient Counterfactuals from Invertible Neural Networks"

25 / 25 papers shown
Title
Counterfactual Visual Explanation via Causally-Guided Adversarial Steering
Counterfactual Visual Explanation via Causally-Guided Adversarial Steering
Yiran Qiao
Disheng Liu
Yiren Lu
Yu Yin
Mengnan Du
Jing Ma
GANCMLAAML
64
0
0
14 Jul 2025
Gumbel Counterfactual Generation From Language Models
Gumbel Counterfactual Generation From Language Models
Shauli Ravfogel
Anej Svete
Vésteinn Snæbjarnarson
Robert Bamler
LRMCML
190
6
0
11 Nov 2024
TABCF: Counterfactual Explanations for Tabular Data Using a
  Transformer-Based VAE
TABCF: Counterfactual Explanations for Tabular Data Using a Transformer-Based VAE
Emmanouil Panagiotou
Manuel Heurich
Tim Landgraf
Eirini Ntoutsi
LMTD
87
4
0
14 Oct 2024
Explainable AI needs formal notions of explanation correctness
Explainable AI needs formal notions of explanation correctness
Stefan Haufe
Rick Wilming
Benedict Clark
Rustam Zhumagambetov
Danny Panknin
Ahcène Boubekki
XAI
150
2
0
22 Sep 2024
The Gaussian Discriminant Variational Autoencoder (GdVAE): A
  Self-Explainable Model with Counterfactual Explanations
The Gaussian Discriminant Variational Autoencoder (GdVAE): A Self-Explainable Model with Counterfactual Explanations
Anselm Haselhoff
Kevin Trelenberg
Fabian Küppers
Jonas Schneider
88
3
0
19 Sep 2024
Global Counterfactual Directions
Global Counterfactual Directions
Bartlomiej Sobieski
P. Biecek
DiffM
255
8
0
18 Apr 2024
Causal Generative Explainers using Counterfactual Inference: A Case
  Study on the Morpho-MNIST Dataset
Causal Generative Explainers using Counterfactual Inference: A Case Study on the Morpho-MNIST Dataset
William Taylor-Melanson
Zahra Sadeghi
Stan Matwin
CML
111
7
0
21 Jan 2024
Latent Diffusion Counterfactual Explanations
Latent Diffusion Counterfactual Explanations
Karim Farid
Simon Schrodi
Max Argus
Thomas Brox
DiffM
125
17
0
10 Oct 2023
Counterfactual Learning on Graphs: A Survey
Counterfactual Learning on Graphs: A Survey
Zhimeng Guo
Teng Xiao
Zongyu Wu
Charu C. Aggarwal
Hui Liu
Suhang Wang
CMLAI4CE
249
24
0
03 Apr 2023
CeFlow: A Robust and Efficient Counterfactual Explanation Framework for
  Tabular Data using Normalizing Flows
CeFlow: A Robust and Efficient Counterfactual Explanation Framework for Tabular Data using Normalizing Flows
Tri Dung Duong
Qian Li
Guandong Xu
OOD
84
7
0
26 Mar 2023
Adversarial Counterfactual Visual Explanations
Adversarial Counterfactual Visual Explanations
Guillaume Jeanneret
Loïc Simon
F. Jurie
DiffM
129
37
0
17 Mar 2023
On Modifying a Neural Network's Perception
On Modifying a Neural Network's Perception
Manuel de Sousa Ribeiro
João Leite
AAML
92
1
0
05 Mar 2023
A Rigorous Study Of The Deep Taylor Decomposition
A Rigorous Study Of The Deep Taylor Decomposition
Leon Sixt
Tim Landgraf
FAttAAML
77
6
0
14 Nov 2022
Causality-Inspired Taxonomy for Explainable Artificial Intelligence
Causality-Inspired Taxonomy for Explainable Artificial Intelligence
Pedro C. Neto
Tiago B. Gonccalves
João Ribeiro Pinto
W. Silva
Ana F. Sequeira
Arun Ross
Jaime S. Cardoso
XAI
168
15
0
19 Aug 2022
Diffeomorphic Counterfactuals with Generative Models
Diffeomorphic Counterfactuals with Generative Models
Ann-Kathrin Dombrowski
Jan E. Gerken
Klaus-Robert Muller
Pan Kessel
DiffMBDL
169
19
0
10 Jun 2022
Do Users Benefit From Interpretable Vision? A User Study, Baseline, And
  Dataset
Do Users Benefit From Interpretable Vision? A User Study, Baseline, And Dataset
Leon Sixt
M. Schuessler
Oana-Iuliana Popescu
Philipp Weiß
Tim Landgraf
FAtt
93
15
0
25 Apr 2022
Diffusion Models for Counterfactual Explanations
Diffusion Models for Counterfactual Explanations
Guillaume Jeanneret
Loïc Simon
F. Jurie
DiffM
162
68
0
29 Mar 2022
Making Heads or Tails: Towards Semantically Consistent Visual
  Counterfactuals
Making Heads or Tails: Towards Semantically Consistent Visual Counterfactuals
Simon Vandenhende
D. Mahajan
Filip Radenovic
Deepti Ghadiyaram
148
35
0
24 Mar 2022
Diffusion Causal Models for Counterfactual Estimation
Diffusion Causal Models for Counterfactual Estimation
Pedro Sanchez
Sotirios A. Tsaftaris
DiffMBDL
148
87
0
21 Feb 2022
When less is more: Simplifying inputs aids neural network understanding
When less is more: Simplifying inputs aids neural network understanding
R. Schirrmeister
Rosanne Liu
Sara Hooker
T. Ball
214
5
0
14 Jan 2022
Fighting Money Laundering with Statistics and Machine Learning
Fighting Money Laundering with Statistics and Machine Learning
R. Jensen
Alexandros Iosifidis
163
20
0
11 Jan 2022
On Quantitative Evaluations of Counterfactuals
On Quantitative Evaluations of Counterfactuals
Frederik Hvilshoj
Alexandros Iosifidis
Ira Assent
111
10
0
30 Oct 2021
Counterfactual Interventions Reveal the Causal Effect of Relative Clause
  Representations on Agreement Prediction
Counterfactual Interventions Reveal the Causal Effect of Relative Clause Representations on Agreement Prediction
Shauli Ravfogel
Grusha Prasad
Tal Linzen
Yoav Goldberg
161
65
0
14 May 2021
Benchmarking and Survey of Explanation Methods for Black Box Models
Benchmarking and Survey of Explanation Methods for Black Box Models
F. Bodria
F. Giannotti
Riccardo Guidotti
Francesca Naretto
D. Pedreschi
S. Rinzivillo
XAI
158
252
0
25 Feb 2021
Counterfactual Explanations and Algorithmic Recourses for Machine
  Learning: A Review
Counterfactual Explanations and Algorithmic Recourses for Machine Learning: A Review
Sahil Verma
Varich Boonsanong
Minh Hoang
Keegan E. Hines
John P. Dickerson
Chirag Shah
CML
329
203
0
20 Oct 2020
1