ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2103.16341
  4. Cited By
Learning Parallel Dense Correspondence from Spatio-Temporal Descriptors
  for Efficient and Robust 4D Reconstruction

Learning Parallel Dense Correspondence from Spatio-Temporal Descriptors for Efficient and Robust 4D Reconstruction

30 March 2021
Jiapeng Tang
Dan Xu
K. Jia
Lei Zhang
    3DPC
    3DH
ArXivPDFHTML

Papers citing "Learning Parallel Dense Correspondence from Spatio-Temporal Descriptors for Efficient and Robust 4D Reconstruction"

6 / 6 papers shown
Title
Fluid Dynamics Network: Topology-Agnostic 4D Reconstruction via Fluid
  Dynamics Priors
Fluid Dynamics Network: Topology-Agnostic 4D Reconstruction via Fluid Dynamics Priors
Daniele Baieri
Stefano Esposito
Filippo Maggioli
Emanuele Rodolà
AI4CE
15
3
0
17 Mar 2023
CaDeX: Learning Canonical Deformation Coordinate Space for Dynamic
  Surface Representation via Neural Homeomorphism
CaDeX: Learning Canonical Deformation Coordinate Space for Dynamic Surface Representation via Neural Homeomorphism
Jiahui Lei
Kostas Daniilidis
18
53
0
30 Mar 2022
Sign-Agnostic Implicit Learning of Surface Self-Similarities for Shape
  Modeling and Reconstruction from Raw Point Clouds
Sign-Agnostic Implicit Learning of Surface Self-Similarities for Shape Modeling and Reconstruction from Raw Point Clouds
Wenbin Zhao
Jiabao Lei
Yuxin Wen
Jianguo Zhang
K. Jia
3DPC
46
32
0
14 Dec 2020
Convolutional Occupancy Networks
Convolutional Occupancy Networks
Songyou Peng
Michael Niemeyer
L. Mescheder
Marc Pollefeys
Andreas Geiger
3DV
AI4CE
209
860
0
10 Mar 2020
Deep Mesh Reconstruction from Single RGB Images via Topology
  Modification Networks
Deep Mesh Reconstruction from Single RGB Images via Topology Modification Networks
J. Pan
Xiaoguang Han
Weikai Chen
Jiapeng Tang
K. Jia
96
187
0
01 Sep 2019
PointNet: Deep Learning on Point Sets for 3D Classification and
  Segmentation
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
C. Qi
Hao Su
Kaichun Mo
Leonidas J. Guibas
3DH
3DPC
3DV
PINN
210
13,886
0
02 Dec 2016
1