ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2104.03220
  4. Cited By
DoubleML -- An Object-Oriented Implementation of Double Machine Learning
  in Python
v1v2 (latest)

DoubleML -- An Object-Oriented Implementation of Double Machine Learning in Python

7 April 2021
Philipp Bach
Victor Chernozhukov
Malte S. Kurz
Martin Spindler
    VLMGP
ArXiv (abs)PDFHTMLGithub (594★)

Papers citing "DoubleML -- An Object-Oriented Implementation of Double Machine Learning in Python"

7 / 7 papers shown
Title
Adjustment for Confounding using Pre-Trained Representations
Adjustment for Confounding using Pre-Trained Representations
Rickmer Schulte
David Rügamer
Thomas Nagler
CMLBDL
25
0
0
17 Jun 2025
Forests for Differences: Robust Causal Inference Beyond Parametric DiD
Forests for Differences: Robust Causal Inference Beyond Parametric DiD
Hugo Gobato Souto
Francisco Louzada Neto
61
0
0
14 May 2025
Practical programming research of Linear DML model based on the simplest Python code: From the standpoint of novice researchers
Shunxin Yao
39
0
0
22 Feb 2025
HiPart: Hierarchical Divisive Clustering Toolbox
HiPart: Hierarchical Divisive Clustering Toolbox
Panagiotis Anagnostou
S. Tasoulis
V. Plagianakos
D. Tasoulis
92
1
0
18 Sep 2022
Statistical Testing under Distributional Shifts
Statistical Testing under Distributional Shifts
Nikolaj Thams
Sorawit Saengkyongam
Niklas Pfister
J. Peters
OOD
124
10
0
22 May 2021
DoubleML -- An Object-Oriented Implementation of Double Machine Learning
  in R
DoubleML -- An Object-Oriented Implementation of Double Machine Learning in R
Philipp Bach
Victor Chernozhukov
Malte S. Kurz
Martin Spindler
Jan Rabenseifner
GP
93
37
0
17 Mar 2021
Necessary and sufficient graphical conditions for optimal adjustment
  sets in causal graphical models with hidden variables
Necessary and sufficient graphical conditions for optimal adjustment sets in causal graphical models with hidden variables
Jakob Runge
CML
80
27
0
20 Feb 2021
1