ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2104.05255
  4. Cited By
Improving Online Performance Prediction for Semantic Segmentation

Improving Online Performance Prediction for Semantic Segmentation

12 April 2021
Marvin Klingner
Andreas Bär
Marcel A. Mross
Tim Fingscheidt
ArXivPDFHTML

Papers citing "Improving Online Performance Prediction for Semantic Segmentation"

6 / 6 papers shown
Title
Exposing Text-Image Inconsistency Using Diffusion Models
Exposing Text-Image Inconsistency Using Diffusion Models
Mingzhen Huang
Shan Jia
Zhou Zhou
Yan Ju
Jialing Cai
Siwei Lyu
38
7
0
28 Apr 2024
The Vulnerability of Semantic Segmentation Networks to Adversarial
  Attacks in Autonomous Driving: Enhancing Extensive Environment Sensing
The Vulnerability of Semantic Segmentation Networks to Adversarial Attacks in Autonomous Driving: Enhancing Extensive Environment Sensing
Andreas Bär
Jonas Löhdefink
Nikhil Kapoor
Serin Varghese
Fabian Hüger
Peter Schlicht
Tim Fingscheidt
AAML
106
33
0
11 Jan 2021
Differential Treatment for Stuff and Things: A Simple Unsupervised
  Domain Adaptation Method for Semantic Segmentation
Differential Treatment for Stuff and Things: A Simple Unsupervised Domain Adaptation Method for Semantic Segmentation
Zhonghao Wang
Mo Yu
Yunchao Wei
Rogerio Feris
Jinjun Xiong
Wen-mei W. Hwu
Thomas S. Huang
Humphrey Shi
OOD
179
232
0
18 Mar 2020
Label-Driven Reconstruction for Domain Adaptation in Semantic
  Segmentation
Label-Driven Reconstruction for Domain Adaptation in Semantic Segmentation
Jinyu Yang
Weizhi An
Sheng Wang
Xinliang Zhu
Chao-chao Yan
Junzhou Huang
69
109
0
10 Mar 2020
ENet: A Deep Neural Network Architecture for Real-Time Semantic
  Segmentation
ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation
Adam Paszke
Abhishek Chaurasia
Sangpil Kim
Eugenio Culurciello
SSeg
216
2,056
0
07 Jun 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
261
9,136
0
06 Jun 2015
1