ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2104.09061
  4. Cited By
Improving Faithfulness in Abstractive Summarization with Contrast
  Candidate Generation and Selection

Improving Faithfulness in Abstractive Summarization with Contrast Candidate Generation and Selection

19 April 2021
Sihao Chen
Fan Zhang
Kazoo Sone
Dan Roth
    HILM
ArXivPDFHTML

Papers citing "Improving Faithfulness in Abstractive Summarization with Contrast Candidate Generation and Selection"

17 / 67 papers shown
Title
Factual Error Correction for Abstractive Summaries Using Entity
  Retrieval
Factual Error Correction for Abstractive Summaries Using Entity Retrieval
Hwanhee Lee
Cheoneum Park
Seunghyun Yoon
Trung Bui
Franck Dernoncourt
Juae Kim
Kyomin Jung
KELM
12
12
0
18 Apr 2022
Stretching Sentence-pair NLI Models to Reason over Long Documents and
  Clusters
Stretching Sentence-pair NLI Models to Reason over Long Documents and Clusters
Tal Schuster
Sihao Chen
S. Buthpitiya
Alex Fabrikant
Donald Metzler
13
41
0
15 Apr 2022
Learning to Revise References for Faithful Summarization
Learning to Revise References for Faithful Summarization
Griffin Adams
Han-Chin Shing
Q. Sun
C. Winestock
Kathleen McKeown
Noémie Elhadad
11
32
0
13 Apr 2022
AraBART: a Pretrained Arabic Sequence-to-Sequence Model for Abstractive
  Summarization
AraBART: a Pretrained Arabic Sequence-to-Sequence Model for Abstractive Summarization
Moussa Kamal Eddine
Nadi Tomeh
Nizar Habash
Joseph Le Roux
Michalis Vazirgiannis
15
44
0
21 Mar 2022
Faithfulness in Natural Language Generation: A Systematic Survey of
  Analysis, Evaluation and Optimization Methods
Faithfulness in Natural Language Generation: A Systematic Survey of Analysis, Evaluation and Optimization Methods
Wei Li
Wenhao Wu
Moye Chen
Jiachen Liu
Xinyan Xiao
Hua-Hong Wu
HILM
19
27
0
10 Mar 2022
Survey of Hallucination in Natural Language Generation
Survey of Hallucination in Natural Language Generation
Ziwei Ji
Nayeon Lee
Rita Frieske
Tiezheng Yu
D. Su
...
Delong Chen
Wenliang Dai
Ho Shu Chan
Andrea Madotto
Pascale Fung
HILM
LRM
36
2,230
0
08 Feb 2022
Measure and Improve Robustness in NLP Models: A Survey
Measure and Improve Robustness in NLP Models: A Survey
Xuezhi Wang
Haohan Wang
Diyi Yang
139
130
0
15 Dec 2021
CO2Sum:Contrastive Learning for Factual-Consistent Abstractive
  Summarization
CO2Sum:Contrastive Learning for Factual-Consistent Abstractive Summarization
Wei Liu
Huanqin Wu
Wenjing Mu
Zhen Li
Tao Chen
Dan Nie
HILM
6
17
0
02 Dec 2021
CaPE: Contrastive Parameter Ensembling for Reducing Hallucination in
  Abstractive Summarization
CaPE: Contrastive Parameter Ensembling for Reducing Hallucination in Abstractive Summarization
Prafulla Kumar Choubey
Alexander R. Fabbri
Jesse Vig
Chien-Sheng Wu
Wenhao Liu
Nazneen Rajani
HILM
14
16
0
14 Oct 2021
CLIFF: Contrastive Learning for Improving Faithfulness and Factuality in
  Abstractive Summarization
CLIFF: Contrastive Learning for Improving Faithfulness and Factuality in Abstractive Summarization
Shuyang Cao
Lu Wang
HILM
19
174
0
19 Sep 2021
Faithful or Extractive? On Mitigating the Faithfulness-Abstractiveness
  Trade-off in Abstractive Summarization
Faithful or Extractive? On Mitigating the Faithfulness-Abstractiveness Trade-off in Abstractive Summarization
Faisal Ladhak
Esin Durmus
He He
Claire Cardie
Kathleen McKeown
12
64
0
31 Aug 2021
Improving Factual Consistency of Abstractive Summarization via Question
  Answering
Improving Factual Consistency of Abstractive Summarization via Question Answering
Feng Nan
Cicero Nogueira dos Santos
Henghui Zhu
Patrick K. L. Ng
Kathleen McKeown
Ramesh Nallapati
Dejiao Zhang
Zhiguo Wang
Andrew O. Arnold
Bing Xiang
HILM
6
82
0
10 May 2021
Toward Improving Coherence and Diversity of Slogan Generation
Toward Improving Coherence and Diversity of Slogan Generation
Yiping Jin
Akshay Bhatia
Dittaya Wanvarie
Phu T. V. Le
11
5
0
11 Feb 2021
Understanding the Extent to which Summarization Evaluation Metrics
  Measure the Information Quality of Summaries
Understanding the Extent to which Summarization Evaluation Metrics Measure the Information Quality of Summaries
Daniel Deutsch
Dan Roth
46
7
0
23 Oct 2020
Factual Error Correction for Abstractive Summarization Models
Factual Error Correction for Abstractive Summarization Models
Mengyao Cao
Yue Dong
Jiapeng Wu
Jackie C.K. Cheung
HILM
KELM
167
159
0
17 Oct 2020
Stanza: A Python Natural Language Processing Toolkit for Many Human
  Languages
Stanza: A Python Natural Language Processing Toolkit for Many Human Languages
Peng Qi
Yuhao Zhang
Yuhui Zhang
Jason Bolton
Christopher D. Manning
AI4TS
199
1,652
0
16 Mar 2020
Text Summarization with Pretrained Encoders
Text Summarization with Pretrained Encoders
Yang Liu
Mirella Lapata
MILM
254
1,428
0
22 Aug 2019
Previous
12