Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2104.09284
Cited By
LAFEAT: Piercing Through Adversarial Defenses with Latent Features
19 April 2021
Yunrui Yu
Xitong Gao
Chengzhong Xu
AAML
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"LAFEAT: Piercing Through Adversarial Defenses with Latent Features"
9 / 9 papers shown
Title
MTL-UE: Learning to Learn Nothing for Multi-Task Learning
Yi Yu
Song Xia
Siyuan Yang
Chenqi Kong
Wenhan Yang
Shijian Lu
Yap-Peng Tan
Alex Chichung Kot
46
0
0
08 May 2025
Towards Scalable Topological Regularizers
Hiu-Tung Wong
Darrick Lee
Hong Yan
BDL
57
0
0
24 Jan 2025
Towards Million-Scale Adversarial Robustness Evaluation With Stronger Individual Attacks
Yong Xie
Weijie Zheng
Hanxun Huang
Guangnan Ye
Xingjun Ma
AAML
72
1
0
20 Nov 2024
Certifying LLM Safety against Adversarial Prompting
Aounon Kumar
Chirag Agarwal
Suraj Srinivas
Aaron Jiaxun Li
S. Feizi
Himabindu Lakkaraju
AAML
22
164
0
06 Sep 2023
Alternating Objectives Generates Stronger PGD-Based Adversarial Attacks
Nikolaos Antoniou
Efthymios Georgiou
Alexandros Potamianos
AAML
27
5
0
15 Dec 2022
Advances in adversarial attacks and defenses in computer vision: A survey
Naveed Akhtar
Ajmal Saeed Mian
Navid Kardan
M. Shah
AAML
26
235
0
01 Aug 2021
Increasing-Margin Adversarial (IMA) Training to Improve Adversarial Robustness of Neural Networks
Linhai Ma
Liang Liang
AAML
18
18
0
19 May 2020
Adversarial Machine Learning at Scale
Alexey Kurakin
Ian Goodfellow
Samy Bengio
AAML
256
3,109
0
04 Nov 2016
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
250
5,833
0
08 Jul 2016
1