ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2104.09323
  4. Cited By
Sequential Deconfounding for Causal Inference with Unobserved
  Confounders

Sequential Deconfounding for Causal Inference with Unobserved Confounders

16 April 2021
Tobias Hatt
Stefan Feuerriegel
    CML
ArXivPDFHTML

Papers citing "Sequential Deconfounding for Causal Inference with Unobserved Confounders"

9 / 9 papers shown
Title
Stabilized Neural Prediction of Potential Outcomes in Continuous Time
Stabilized Neural Prediction of Potential Outcomes in Continuous Time
Konstantin Hess
Stefan Feuerriegel
46
0
0
04 Oct 2024
Causal Dynamic Variational Autoencoder for Counterfactual Regression in Longitudinal Data
Causal Dynamic Variational Autoencoder for Counterfactual Regression in Longitudinal Data
Mouad El Bouchattaoui
Myriam Tami
Benoit Lepetit
P. Cournède
CML
OOD
58
2
0
16 Oct 2023
Estimating Treatment Effects in Continuous Time with Hidden Confounders
Estimating Treatment Effects in Continuous Time with Hidden Confounders
Defu Cao
James Enouen
Y. Liu
CML
24
2
0
19 Feb 2023
Learning Optimal Dynamic Treatment Regimes Using Causal Tree Methods in
  Medicine
Learning Optimal Dynamic Treatment Regimes Using Causal Tree Methods in Medicine
Theresa Blümlein
Joel Persson
Stefan Feuerriegel
CML
22
11
0
14 Apr 2022
When Physics Meets Machine Learning: A Survey of Physics-Informed
  Machine Learning
When Physics Meets Machine Learning: A Survey of Physics-Informed Machine Learning
Chuizheng Meng
Sungyong Seo
Defu Cao
Sam Griesemer
Yan Liu
PINN
AI4CE
34
54
0
31 Mar 2022
Combining Observational and Randomized Data for Estimating Heterogeneous
  Treatment Effects
Combining Observational and Randomized Data for Estimating Heterogeneous Treatment Effects
Tobias Hatt
Jeroen Berrevoets
Alicia Curth
Stefan Feuerriegel
M. Schaar
CML
42
29
0
25 Feb 2022
Deconfounding Temporal Autoencoder: Estimating Treatment Effects over
  Time Using Noisy Proxies
Deconfounding Temporal Autoencoder: Estimating Treatment Effects over Time Using Noisy Proxies
Milan Kuzmanovic
Tobias Hatt
Stefan Feuerriegel
CML
42
21
0
06 Dec 2021
Estimating Average Treatment Effects via Orthogonal Regularization
Estimating Average Treatment Effects via Orthogonal Regularization
Tobias Hatt
Stefan Feuerriegel
CML
148
35
0
21 Jan 2021
Learning Representations for Counterfactual Inference
Learning Representations for Counterfactual Inference
Fredrik D. Johansson
Uri Shalit
David Sontag
CML
OOD
BDL
210
719
0
12 May 2016
1