ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2104.10029
  4. Cited By
Multiple Sclerosis Lesion Analysis in Brain Magnetic Resonance Images:
  Techniques and Clinical Applications

Multiple Sclerosis Lesion Analysis in Brain Magnetic Resonance Images: Techniques and Clinical Applications

20 April 2021
Yang Ma
Chaoyi Zhang
Mariano Cabezas
Yang Song
Zihao Tang
Dongnan Liu
Weidong (Tom) Cai
M. Barnett
Chenyu Wang
ArXivPDFHTML

Papers citing "Multiple Sclerosis Lesion Analysis in Brain Magnetic Resonance Images: Techniques and Clinical Applications"

10 / 10 papers shown
Title
Exploiting XAI maps to improve MS lesion segmentation and detection in
  MRI
Exploiting XAI maps to improve MS lesion segmentation and detection in MRI
F. Spagnolo
N. Molchanova
Mario Ocampo Pineda
L. Melie-García
Meritxell Bach Cuadra
C. Granziera
Vincent Andrearczyk
A. Depeursinge
FAtt
MedIm
21
0
0
21 Aug 2024
Symmetry Awareness Encoded Deep Learning Framework for Brain Imaging
  Analysis
Symmetry Awareness Encoded Deep Learning Framework for Brain Imaging Analysis
Yang Ma
Dongang Wang
Peilin Liu
L. Masters
M. Barnett
Weidong Cai
Chenyu Wang
19
0
0
12 Jul 2024
Instance-level quantitative saliency in multiple sclerosis lesion
  segmentation
Instance-level quantitative saliency in multiple sclerosis lesion segmentation
F. Spagnolo
N. Molchanova
Roger Schaer
Meritxell Bach Cuadra
Mario Ocampo Pineda
L. Melie-García
C. Granziera
Vincent Andrearczyk
A. Depeursinge
15
1
0
13 Jun 2024
P-Count: Persistence-based Counting of White Matter Hyperintensities in
  Brain MRI
P-Count: Persistence-based Counting of White Matter Hyperintensities in Brain MRI
Xiaoling Hu
Annabel Sorby-Adams
F. Barkhof
Taylor Kimberly
O. Puonti
J. Iglesias
16
3
0
20 Mar 2024
Improving Multiple Sclerosis Lesion Segmentation Across Clinical Sites:
  A Federated Learning Approach with Noise-Resilient Training
Improving Multiple Sclerosis Lesion Segmentation Across Clinical Sites: A Federated Learning Approach with Noise-Resilient Training
Lei Bai
Dongang Wang
Michael Barnett
Mariano Cabezas
Weidong (Tom) Cai
...
Ryan Sullivan
Hengrui Wang
Geng Zhan
Wanli Ouyang
Chenyu Wang
19
7
0
31 Aug 2023
CoactSeg: Learning from Heterogeneous Data for New Multiple Sclerosis
  Lesion Segmentation
CoactSeg: Learning from Heterogeneous Data for New Multiple Sclerosis Lesion Segmentation
Yicheng Wu
Zhonghua Wu
Hengcan Shi
Bjoern Picker
W. Chong
Jianfei Cai
OOD
24
5
0
10 Jul 2023
TW-BAG: Tensor-wise Brain-aware Gate Network for Inpainting Disrupted
  Diffusion Tensor Imaging
TW-BAG: Tensor-wise Brain-aware Gate Network for Inpainting Disrupted Diffusion Tensor Imaging
Zihao Tang
Xinyi Wang
Lihaowen Zhu
Mariano Cabezas
Dongnan Liu
Michael Barnett
Weidong (Tom) Cai
Chengyu Wang
DiffM
MedIm
6
5
0
31 Oct 2022
MS Lesion Segmentation: Revisiting Weighting Mechanisms for Federated
  Learning
MS Lesion Segmentation: Revisiting Weighting Mechanisms for Federated Learning
Dongnan Liu
Mariano Cabezas
Dongang Wang
Zihao Tang
Lei Bai
...
Fernando Calamante
Michael Barnett
Wanli Ouyang
Weidong (Tom) Cai
Chenyu Wang
FedML
17
4
0
03 May 2022
Deep Multi-scale Location-aware 3D Convolutional Neural Networks for
  Automated Detection of Lacunes of Presumed Vascular Origin
Deep Multi-scale Location-aware 3D Convolutional Neural Networks for Automated Detection of Lacunes of Presumed Vascular Origin
Mohsen Ghafoorian
N. Karssemeijer
Tom Heskes
M. Bergkamp
Joost Wissink
...
K. Keizer
F.‐E. Leeuw
Bram van Ginneken
E. Marchiori
B. Platel
MedIm
207
124
0
24 Oct 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
247
9,109
0
06 Jun 2015
1