Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2104.12325
Cited By
Efficient training of physics-informed neural networks via importance sampling
26 April 2021
M. A. Nabian
R. J. Gladstone
Hadi Meidani
DiffM
PINN
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Efficient training of physics-informed neural networks via importance sampling"
7 / 7 papers shown
Title
Investigating Guiding Information for Adaptive Collocation Point Sampling in PINNs
Jose Florido
He-Nan Wang
Amirul Khan
P. Jimack
21
2
0
18 Apr 2024
Data-Driven Physics-Informed Neural Networks: A Digital Twin Perspective
Sunwoong Yang
Hojin Kim
Y. Hong
K. Yee
R. Maulik
Namwoo Kang
PINN
AI4CE
8
16
0
05 Jan 2024
Efficient Training of Physics-Informed Neural Networks with Direct Grid Refinement Algorithm
Shikhar Nilabh
F. Grandia
20
1
0
14 Jun 2023
GAS: A Gaussian Mixture Distribution-Based Adaptive Sampling Method for PINNs
Yuling Jiao
Dingwei Li
Xiliang Lu
J. Yang
Cheng Yuan
10
9
0
28 Mar 2023
Active Learning and Bayesian Optimization: a Unified Perspective to Learn with a Goal
Francesco Di Fiore
Michela Nardelli
L. Mainini
23
22
0
02 Mar 2023
Physics-informed neural network solution of thermo-hydro-mechanical (THM) processes in porous media
Daniel Amini
E. Haghighat
R. Juanes
PINN
AI4CE
11
22
0
03 Mar 2022
NVIDIA SimNet^{TM}: an AI-accelerated multi-physics simulation framework
O. Hennigh
S. Narasimhan
M. A. Nabian
Akshay Subramaniam
Kaustubh Tangsali
M. Rietmann
J. Ferrandis
Wonmin Byeon
Z. Fang
S. Choudhry
PINN
AI4CE
85
112
0
14 Dec 2020
1