Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2104.14380
Cited By
PPFL: Privacy-preserving Federated Learning with Trusted Execution Environments
29 April 2021
Fan Mo
Hamed Haddadi
Kleomenis Katevas
Eduard Marin
Diego Perino
N. Kourtellis
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"PPFL: Privacy-preserving Federated Learning with Trusted Execution Environments"
33 / 33 papers shown
Title
Federated Learning for Cyber Physical Systems: A Comprehensive Survey
Minh K. Quan
P. Pathirana
M. Wijayasundara
S. Setunge
Dinh C. Nguyen
Christopher G. Brinton
David J. Love
H. Vincent Poor
AI4CE
49
0
0
08 May 2025
Moss: Proxy Model-based Full-Weight Aggregation in Federated Learning with Heterogeneous Models
Y. Cai
Ziqi Zhang
Ding Li
Yao Guo
Xiangqun Chen
48
0
0
13 Mar 2025
SMTFL: Secure Model Training to Untrusted Participants in Federated Learning
Zhihui Zhao
Xiaorong Dong
Yimo Ren
Jianhua Wang
Dan Yu
Hongsong Zhu
Yongle Chen
77
0
0
24 Feb 2025
Poisoning Prevention in Federated Learning and Differential Privacy via Stateful Proofs of Execution
Norrathep Rattanavipanon
Ivan de Oliviera Nunes
78
0
0
28 Jan 2025
A performance analysis of VM-based Trusted Execution Environments for Confidential Federated Learning
Bruno Casella
FedML
32
0
0
20 Jan 2025
Laminator: Verifiable ML Property Cards using Hardware-assisted Attestations
Vasisht Duddu
Oskari Jarvinen
Lachlan J. Gunn
Nirmal Asokan
67
1
0
25 Jun 2024
VeriSplit: Secure and Practical Offloading of Machine Learning Inferences across IoT Devices
Han Zhang
Zifan Wang
Mihir Dhamankar
Matt Fredrikson
Yuvraj Agarwal
41
2
0
02 Jun 2024
You Can Use But Cannot Recognize: Preserving Visual Privacy in Deep Neural Networks
Qiushi Li
Yan Zhang
Ju Ren
Qi Li
Yaoxue Zhang
AAML
PICV
36
23
0
05 Apr 2024
Trustworthy Distributed AI Systems: Robustness, Privacy, and Governance
Wenqi Wei
Ling Liu
23
16
0
02 Feb 2024
Federated learning with differential privacy and an untrusted aggregator
Kunlong Liu
Trinabh Gupta
37
0
0
17 Dec 2023
Federated Learning for Connected and Automated Vehicles: A Survey of Existing Approaches and Challenges
Vishnu Pandi Chellapandi
Liangqi Yuan
Christopher G. Brinton
Stanislaw H. .Zak
Ziran Wang
FedML
31
75
0
21 Aug 2023
Heterogeneous Federated Learning: State-of-the-art and Research Challenges
Mang Ye
Xiuwen Fang
Bo Du
PongChi Yuen
Dacheng Tao
FedML
AAML
33
244
0
20 Jul 2023
Avoid Adversarial Adaption in Federated Learning by Multi-Metric Investigations
T. Krauß
Alexandra Dmitrienko
AAML
16
4
0
06 Jun 2023
Robust and IP-Protecting Vertical Federated Learning against Unexpected Quitting of Parties
Jingwei Sun
Zhixu Du
Anna Dai
Saleh Baghersalimi
Alireza Amirshahi
David Atienza
Yiran Chen
FedML
11
6
0
28 Mar 2023
P4L: Privacy Preserving Peer-to-Peer Learning for Infrastructureless Setups
Ioannis Arapakis
P. Papadopoulos
Kleomenis Katevas
Diego Perino
19
7
0
26 Feb 2023
FLINT: A Platform for Federated Learning Integration
Ewen N. Wang
Ajaykumar Kannan
Yuefeng Liang
Boyi Chen
Mosharaf Chowdhury
33
24
0
24 Feb 2023
Federated Gradient Matching Pursuit
Halyun Jeong
Deanna Needell
Jing Qin
FedML
35
1
0
20 Feb 2023
Does Federated Learning Really Need Backpropagation?
H. Feng
Tianyu Pang
Chao Du
Wei-Neng Chen
Shuicheng Yan
Min-Bin Lin
FedML
26
10
0
28 Jan 2023
Personalised Federated Learning On Heterogeneous Feature Spaces
A. Rakotomamonjy
Maxime Vono
H. M. Ruiz
L. Ralaivola
FedML
18
8
0
26 Jan 2023
Enhancing Efficiency in Multidevice Federated Learning through Data Selection
Fan Mo
Mohammad Malekzadeh
S. Chatterjee
F. Kawsar
Akhil Mathur
FedML
30
2
0
08 Nov 2022
A Framework for Preserving Privacy and Cybersecurity in Brain-Computer Interfacing Applications
Maryna Kapitonova
P. Kellmeyer
S. Vogt
T. Ball
16
8
0
19 Sep 2022
MUD-PQFed: Towards Malicious User Detection in Privacy-Preserving Quantized Federated Learning
Hua Ma
Qun Li
Yifeng Zheng
Zhi Zhang
Xiaoning Liu
Yan Gao
S. Al-Sarawi
Derek Abbott
FedML
21
3
0
19 Jul 2022
DarKnight: An Accelerated Framework for Privacy and Integrity Preserving Deep Learning Using Trusted Hardware
H. Hashemi
Yongqin Wang
M. Annavaram
FedML
18
58
0
30 Jun 2022
Edge Security: Challenges and Issues
Xin Jin
Charalampos Katsis
Fan Sang
Jiahao Sun
A. Kundu
Ramana Rao Kompella
39
8
0
14 Jun 2022
Private delegated computations using strong isolation
Mathias Brossard
Guilhem Bryant
Basma El Gaabouri
Xinxin Fan
Alexandre Ferreira
...
Dominic P. Mulligan
Nick Spinale
Eric van Hensbergen
Hugo J. M. Vincent
Shale Xiong
26
4
0
06 May 2022
Towards Battery-Free Machine Learning and Inference in Underwater Environments
Yuchen Zhao
Sayed Saad Afzal
Waleed Akbar
Osvy Rodriguez
Fan Mo
David E. Boyle
Fadel M. Adib
Hamed Haddadi
3DV
25
19
0
16 Feb 2022
FedComm: Federated Learning as a Medium for Covert Communication
Dorjan Hitaj
Giulio Pagnotta
B. Hitaj
F. Pérez-Cruz
L. Mancini
FedML
25
10
0
21 Jan 2022
Confidential Machine Learning Computation in Untrusted Environments: A Systems Security Perspective
Kha Dinh Duy
Taehyun Noh
Siwon Huh
Hojoon Lee
56
9
0
05 Nov 2021
Minimum Viable Device Drivers for ARM TrustZone
Liwei Guo
F. Lin
24
18
0
15 Oct 2021
Privacy-Preserving Machine Learning: Methods, Challenges and Directions
Runhua Xu
Nathalie Baracaldo
J. Joshi
24
100
0
10 Aug 2021
Federated Learning with Buffered Asynchronous Aggregation
John Nguyen
Kshitiz Malik
Hongyuan Zhan
Ashkan Yousefpour
Michael G. Rabbat
Mani Malek
Dzmitry Huba
FedML
13
288
0
11 Jun 2021
L
2
^2
2
-GCN: Layer-Wise and Learned Efficient Training of Graph Convolutional Networks
Yuning You
Tianlong Chen
Zhangyang Wang
Yang Shen
GNN
98
82
0
30 Mar 2020
Slalom: Fast, Verifiable and Private Execution of Neural Networks in Trusted Hardware
Florian Tramèr
Dan Boneh
FedML
114
395
0
08 Jun 2018
1