Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2105.01420
Cited By
Training Quantized Neural Networks to Global Optimality via Semidefinite Programming
4 May 2021
Burak Bartan
Mert Pilanci
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Training Quantized Neural Networks to Global Optimality via Semidefinite Programming"
5 / 5 papers shown
Title
MixQuant: Mixed Precision Quantization with a Bit-width Optimization Search
Yichen Xie
Wei Le
MQ
16
4
0
29 Sep 2023
From Complexity to Clarity: Analytical Expressions of Deep Neural Network Weights via Clifford's Geometric Algebra and Convexity
Mert Pilanci
34
2
0
28 Sep 2023
Reducing Computational Complexity of Neural Networks in Optical Channel Equalization: From Concepts to Implementation
Pedro J. Freire
A. Napoli
D. A. Ron
B. Spinnler
M. Anderson
W. Schairer
T. Bex
N. Costa
S. Turitsyn
Jaroslaw E. Prilepsky
27
28
0
26 Aug 2022
Unraveling Attention via Convex Duality: Analysis and Interpretations of Vision Transformers
Arda Sahiner
Tolga Ergen
Batu Mehmet Ozturkler
John M. Pauly
Morteza Mardani
Mert Pilanci
26
33
0
17 May 2022
The Convex Geometry of Backpropagation: Neural Network Gradient Flows Converge to Extreme Points of the Dual Convex Program
Yifei Wang
Mert Pilanci
MLT
MDE
47
11
0
13 Oct 2021
1