Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2105.02410
Cited By
Partially Interpretable Estimators (PIE): Black-Box-Refined Interpretable Machine Learning
6 May 2021
Tong Wang
Jingyi Yang
Yunyi Li
Boxiang Wang
FAtt
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Partially Interpretable Estimators (PIE): Black-Box-Refined Interpretable Machine Learning"
3 / 3 papers shown
Title
Neural Additive Models for Location Scale and Shape: A Framework for Interpretable Neural Regression Beyond the Mean
Anton Thielmann
René-Marcel Kruse
Thomas Kneib
Benjamin Säfken
32
12
0
27 Jan 2023
Post-hoc Concept Bottleneck Models
Mert Yuksekgonul
Maggie Wang
James Zou
145
188
0
31 May 2022
Interpretable Machine Learning: Fundamental Principles and 10 Grand Challenges
Cynthia Rudin
Chaofan Chen
Zhi Chen
Haiyang Huang
Lesia Semenova
Chudi Zhong
FaML
AI4CE
LRM
59
655
0
20 Mar 2021
1