Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2105.03193
Cited By
Network Pruning That Matters: A Case Study on Retraining Variants
7 May 2021
Duong H. Le
Binh-Son Hua
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Network Pruning That Matters: A Case Study on Retraining Variants"
10 / 10 papers shown
Title
Straightforward Layer-wise Pruning for More Efficient Visual Adaptation
Ruizi Han
Jinglei Tang
45
1
0
19 Jul 2024
PERP: Rethinking the Prune-Retrain Paradigm in the Era of LLMs
Max Zimmer
Megi Andoni
Christoph Spiegel
S. Pokutta
VLM
50
10
0
23 Dec 2023
Unlearning with Fisher Masking
Yufang Liu
Changzhi Sun
Yuanbin Wu
Aimin Zhou
MU
21
5
0
09 Oct 2023
Magnitude Attention-based Dynamic Pruning
Jihye Back
Namhyuk Ahn
Jang-Hyun Kim
25
2
0
08 Jun 2023
Network Pruning Spaces
Xuanyu He
Yu-I Yang
Ran Song
Jiachen Pu
Conggang Hu
Feijun Jiang
Wei Zhang
Huanghao Ding
3DPC
27
0
0
19 Apr 2023
Why is the State of Neural Network Pruning so Confusing? On the Fairness, Comparison Setup, and Trainability in Network Pruning
Huan Wang
Can Qin
Yue Bai
Yun Fu
32
20
0
12 Jan 2023
Sparse Double Descent: Where Network Pruning Aggravates Overfitting
Zhengqi He
Zeke Xie
Quanzhi Zhu
Zengchang Qin
69
27
0
17 Jun 2022
Compression-aware Training of Neural Networks using Frank-Wolfe
Max Zimmer
Christoph Spiegel
S. Pokutta
16
9
0
24 May 2022
1xN Pattern for Pruning Convolutional Neural Networks
Mingbao Lin
Yu-xin Zhang
Yuchao Li
Bohong Chen
Fei Chao
Mengdi Wang
Shen Li
Yonghong Tian
Rongrong Ji
3DPC
31
40
0
31 May 2021
Comparing Rewinding and Fine-tuning in Neural Network Pruning
Alex Renda
Jonathan Frankle
Michael Carbin
224
382
0
05 Mar 2020
1