Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2105.03875
Cited By
Bounding Information Leakage in Machine Learning
9 May 2021
Ganesh Del Grosso
Georg Pichler
C. Palamidessi
Pablo Piantanida
MIACV
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Bounding Information Leakage in Machine Learning"
9 / 9 papers shown
Title
Membership Inference Risks in Quantized Models: A Theoretical and Empirical Study
Eric Aubinais
Philippe Formont
Pablo Piantanida
Elisabeth Gassiat
43
0
0
10 Feb 2025
Synthetic Data, Similarity-based Privacy Metrics, and Regulatory (Non-)Compliance
Georgi Ganev
32
0
0
24 Jul 2024
Fundamental Limits of Membership Inference Attacks on Machine Learning Models
Eric Aubinais
Elisabeth Gassiat
Pablo Piantanida
MIACV
48
2
0
20 Oct 2023
Amplifying Membership Exposure via Data Poisoning
Yufei Chen
Chao Shen
Yun Shen
Cong Wang
Yang Zhang
AAML
43
27
0
01 Nov 2022
Parameters or Privacy: A Provable Tradeoff Between Overparameterization and Membership Inference
Jasper Tan
Blake Mason
Hamid Javadi
Richard G. Baraniuk
FedML
34
19
0
02 Feb 2022
Enhanced Membership Inference Attacks against Machine Learning Models
Jiayuan Ye
Aadyaa Maddi
S. K. Murakonda
Vincent Bindschaedler
Reza Shokri
MIALM
MIACV
19
231
0
18 Nov 2021
Systematic Evaluation of Privacy Risks of Machine Learning Models
Liwei Song
Prateek Mittal
MIACV
196
358
0
24 Mar 2020
Machine Unlearning: Linear Filtration for Logit-based Classifiers
Thomas Baumhauer
Pascal Schöttle
Matthias Zeppelzauer
MU
104
130
0
07 Feb 2020
DeepSurv: Personalized Treatment Recommender System Using A Cox Proportional Hazards Deep Neural Network
Jared Katzman
Uri Shaham
Jonathan Bates
A. Cloninger
Tingting Jiang
Y. Kluger
BDL
CML
OOD
106
1,231
0
02 Jun 2016
1