ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2105.04379
  4. Cited By
Gradient-based Bayesian Experimental Design for Implicit Models using
  Mutual Information Lower Bounds

Gradient-based Bayesian Experimental Design for Implicit Models using Mutual Information Lower Bounds

10 May 2021
Steven Kleinegesse
Michael U. Gutmann
    FedML
ArXivPDFHTML

Papers citing "Gradient-based Bayesian Experimental Design for Implicit Models using Mutual Information Lower Bounds"

22 / 22 papers shown
Title
Performance Comparisons of Reinforcement Learning Algorithms for Sequential Experimental Design
Yasir Zubayr Barlas
Kizito Salako
32
0
0
07 Mar 2025
Bayesian Experimental Design via Contrastive Diffusions
Bayesian Experimental Design via Contrastive Diffusions
Jacopo Iollo
Christophe Heinkelé
Pierre Alliez
Florence Forbes
26
0
0
15 Oct 2024
A Likelihood-Free Approach to Goal-Oriented Bayesian Optimal
  Experimental Design
A Likelihood-Free Approach to Goal-Oriented Bayesian Optimal Experimental Design
Atlanta Chakraborty
Xun Huan
Tommie A. Catanach
26
3
0
18 Aug 2024
Nonlinear Bayesian optimal experimental design using logarithmic Sobolev
  inequalities
Nonlinear Bayesian optimal experimental design using logarithmic Sobolev inequalities
Fengyi Li
Ayoub Belhadji
Youssef Marzouk
20
1
0
23 Feb 2024
PASOA- PArticle baSed Bayesian Optimal Adaptive design
PASOA- PArticle baSed Bayesian Optimal Adaptive design
Jacopo Iollo
Christophe Heinkelé
Pierre Alliez
Florence Forbes
13
1
0
11 Feb 2024
On Estimating the Gradient of the Expected Information Gain in Bayesian
  Experimental Design
On Estimating the Gradient of the Expected Information Gain in Bayesian Experimental Design
Ziqiao Ao
Jinglai Li
14
2
0
19 Aug 2023
Amortised Experimental Design and Parameter Estimation for User Models
  of Pointing
Amortised Experimental Design and Parameter Estimation for User Models of Pointing
Antti Keurulainen
Isak Westerlund
Oskar Keurulainen
Andrew Howes
17
7
0
19 Jul 2023
Stochastic Gradient Bayesian Optimal Experimental Designs for
  Simulation-based Inference
Stochastic Gradient Bayesian Optimal Experimental Designs for Simulation-based Inference
Vincent D. Zaballa
E. Hui
21
2
0
27 Jun 2023
Variational Sequential Optimal Experimental Design using Reinforcement
  Learning
Variational Sequential Optimal Experimental Design using Reinforcement Learning
Wanggang Shen
Jiayuan Dong
Xun Huan
21
3
0
17 Jun 2023
Designing Optimal Behavioral Experiments Using Machine Learning
Designing Optimal Behavioral Experiments Using Machine Learning
Simon Valentin
Steven Kleinegesse
Neil R. Bramley
P. Seriès
Michael U. Gutmann
Chris Lucas
19
2
0
12 May 2023
Online simulator-based experimental design for cognitive model selection
Online simulator-based experimental design for cognitive model selection
Alexander Aushev
Aini Putkonen
Grégoire Clarté
Suyog H. Chandramouli
Luigi Acerbi
Samuel Kaski
Andrew Howes
22
2
0
03 Mar 2023
Modern Bayesian Experimental Design
Modern Bayesian Experimental Design
Tom Rainforth
Adam Foster
Desi R. Ivanova
Freddie Bickford-Smith
27
75
0
28 Feb 2023
CO-BED: Information-Theoretic Contextual Optimization via Bayesian
  Experimental Design
CO-BED: Information-Theoretic Contextual Optimization via Bayesian Experimental Design
Desi R. Ivanova
Joel Jennings
Tom Rainforth
Cheng Zhang
Adam Foster
16
3
0
27 Feb 2023
Differentiable Multi-Target Causal Bayesian Experimental Design
Differentiable Multi-Target Causal Bayesian Experimental Design
Yashas Annadani
P. Tigas
Desi R. Ivanova
Andrew Jesson
Y. Gal
Adam Foster
Stefan Bauer
BDL
CML
18
13
0
21 Feb 2023
An Optimal Likelihood Free Method for Biological Model Selection
An Optimal Likelihood Free Method for Biological Model Selection
Vincent D. Zaballa
E. Hui
19
0
0
03 Aug 2022
Statistical applications of contrastive learning
Statistical applications of contrastive learning
Michael U. Gutmann
Steven Kleinegesse
Benjamin Rhodes
16
7
0
29 Apr 2022
Policy-Based Bayesian Experimental Design for Non-Differentiable
  Implicit Models
Policy-Based Bayesian Experimental Design for Non-Differentiable Implicit Models
Vincent Lim
Ellen R. Novoseller
Jeffrey Ichnowski
Huang Huang
Ken Goldberg
OffRL
25
10
0
08 Mar 2022
Implicit Deep Adaptive Design: Policy-Based Experimental Design without
  Likelihoods
Implicit Deep Adaptive Design: Policy-Based Experimental Design without Likelihoods
Desi R. Ivanova
Adam Foster
Steven Kleinegesse
Michael U. Gutmann
Tom Rainforth
OffRL
11
46
0
03 Nov 2021
GaussED: A Probabilistic Programming Language for Sequential
  Experimental Design
GaussED: A Probabilistic Programming Language for Sequential Experimental Design
Matthew A. Fisher
Onur Teymur
Chris J. Oates
19
1
0
15 Oct 2021
Tight Mutual Information Estimation With Contrastive Fenchel-Legendre
  Optimization
Tight Mutual Information Estimation With Contrastive Fenchel-Legendre Optimization
Qing Guo
Junya Chen
Dong Wang
Yuewei Yang
Xinwei Deng
Lawrence Carin
Fan Li
Jing-Zheng Huang
Chenyang Tao
19
19
0
02 Jul 2021
MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
  Inference from Sampled Trajectories
MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood Inference from Sampled Trajectories
G. Isacchini
Natanael Spisak
Armita Nourmohammad
T. Mora
A. Walczak
23
0
0
03 Jun 2021
Gaussian process modeling in approximate Bayesian computation to
  estimate horizontal gene transfer in bacteria
Gaussian process modeling in approximate Bayesian computation to estimate horizontal gene transfer in bacteria
Marko Jarvenpaa
Michael U. Gutmann
Aki Vehtari
Pekka Marttinen
29
41
0
20 Oct 2016
1