ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2105.04522
  4. Cited By
Generalized Jensen-Shannon Divergence Loss for Learning with Noisy
  Labels

Generalized Jensen-Shannon Divergence Loss for Learning with Noisy Labels

10 May 2021
Erik Englesson
Hossein Azizpour
    NoLa
ArXivPDFHTML

Papers citing "Generalized Jensen-Shannon Divergence Loss for Learning with Noisy Labels"

49 / 49 papers shown
Title
Enhanced Sample Selection with Confidence Tracking: Identifying Correctly Labeled yet Hard-to-Learn Samples in Noisy Data
Enhanced Sample Selection with Confidence Tracking: Identifying Correctly Labeled yet Hard-to-Learn Samples in Noisy Data
Weiran Pan
Wei Wei
Feida Zhu
Yong Deng
NoLa
121
0
0
24 Apr 2025
Towards Distribution Matching between Collaborative and Language Spaces for Generative Recommendation
Towards Distribution Matching between Collaborative and Language Spaces for Generative Recommendation
Yi-cui Zhang
Yiwen Zhang
Y. X. R. Wang
Tong Chen
Hongzhi Yin
28
0
0
10 Apr 2025
Text-to-3D Generation using Jensen-Shannon Score Distillation
Text-to-3D Generation using Jensen-Shannon Score Distillation
Khoi Do
Binh-Son Hua
DiffM
47
0
0
08 Mar 2025
Noise-Tolerant Hybrid Prototypical Learning with Noisy Web Data
Chao Liang
Linchao Zhu
Zongxin Yang
Wei Chen
Yi Yang
NoLa
55
0
0
05 Jan 2025
Optimized Gradient Clipping for Noisy Label Learning
Optimized Gradient Clipping for Noisy Label Learning
Xichen Ye
Yifan Wu
Weizhong Zhang
Xiaoqiang Li
Yifan Chen
Cheng Jin
NoLa
79
0
0
12 Dec 2024
Trust And Balance: Few Trusted Samples Pseudo-Labeling and Temperature
  Scaled Loss for Effective Source-Free Unsupervised Domain Adaptation
Trust And Balance: Few Trusted Samples Pseudo-Labeling and Temperature Scaled Loss for Effective Source-Free Unsupervised Domain Adaptation
Andrea Maracani
Lorenzo Rosasco
Lorenzo Natale
28
0
0
01 Sep 2024
Improving Knowledge Distillation in Transfer Learning with Layer-wise
  Learning Rates
Improving Knowledge Distillation in Transfer Learning with Layer-wise Learning Rates
Shirley Kokane
M. R. Uddin
Min Xu
19
1
0
05 Jul 2024
From Biased Selective Labels to Pseudo-Labels: An
  Expectation-Maximization Framework for Learning from Biased Decisions
From Biased Selective Labels to Pseudo-Labels: An Expectation-Maximization Framework for Learning from Biased Decisions
Trenton Chang
Jenna Wiens
32
0
0
27 Jun 2024
Learning with Noisy Ground Truth: From 2D Classification to 3D
  Reconstruction
Learning with Noisy Ground Truth: From 2D Classification to 3D Reconstruction
Yangdi Lu
Wenbo He
3DV
30
0
0
23 Jun 2024
Rethinking the impact of noisy labels in graph classification: A utility
  and privacy perspective
Rethinking the impact of noisy labels in graph classification: A utility and privacy perspective
De Li
Xianxian Li
Zeming Gan
Qiyu Li
Bin Qu
Jinyan Wang
NoLa
40
1
0
11 Jun 2024
Dynamic Loss Decay based Robust Oriented Object Detection on Remote
  Sensing Images with Noisy Labels
Dynamic Loss Decay based Robust Oriented Object Detection on Remote Sensing Images with Noisy Labels
Guozhang Liu
Ting Liu
Mengke Yuan
Tao Pang
Guangxing Yang
Hao Fu
Tao Wang
Tongkui Liao
NoLa
27
1
0
15 May 2024
Robust Semi-supervised Learning via $f$-Divergence and $α$-Rényi
  Divergence
Robust Semi-supervised Learning via fff-Divergence and ααα-Rényi Divergence
Gholamali Aminian
Amirhossien Bagheri
Mahyar JafariNodeh
Radmehr Karimian
Mohammad Hossein Yassaee
21
0
0
01 May 2024
Generalization Measures for Zero-Shot Cross-Lingual Transfer
Generalization Measures for Zero-Shot Cross-Lingual Transfer
Saksham Bassi
Duygu Ataman
Kyunghyun Cho
24
0
0
24 Apr 2024
Coordinated Sparse Recovery of Label Noise
Coordinated Sparse Recovery of Label Noise
Yukun Yang
Naihao Wang
Haixin Yang
Ruirui Li
NoLa
29
0
0
07 Apr 2024
HPL-ESS: Hybrid Pseudo-Labeling for Unsupervised Event-based Semantic
  Segmentation
HPL-ESS: Hybrid Pseudo-Labeling for Unsupervised Event-based Semantic Segmentation
Linglin Jing
Yiming Ding
Yunpeng Gao
Zhigang Wang
Xu Yan
Dong Wang
Gerald Schaefer
Hui Fang
Bin Zhao
Xuelong Li
32
3
0
25 Mar 2024
Indirectly Parameterized Concrete Autoencoders
Indirectly Parameterized Concrete Autoencoders
Alfred Nilsson
Klas Wijk
Sai Bharath Chandra Gutha
Erik Englesson
A. Hotti
Carlo Saccardi
Oskar Kviman
Jens Lagergren
Ricardo Vinuesa
Hossein Azizpour
33
1
0
01 Mar 2024
CoLafier: Collaborative Noisy Label Purifier With Local Intrinsic
  Dimensionality Guidance
CoLafier: Collaborative Noisy Label Purifier With Local Intrinsic Dimensionality Guidance
Dongyu Zhang
Ruofan Hu
Elke A. Rundensteiner
28
0
0
10 Jan 2024
FedDiv: Collaborative Noise Filtering for Federated Learning with Noisy
  Labels
FedDiv: Collaborative Noise Filtering for Federated Learning with Noisy Labels
Jichang Li
Guanbin Li
Hui Cheng
Zicheng Liao
Yizhou Yu
FedML
27
14
0
19 Dec 2023
Interpreting Pretrained Language Models via Concept Bottlenecks
Interpreting Pretrained Language Models via Concept Bottlenecks
Zhen Tan
Lu Cheng
Song Wang
Yuan Bo
Jundong Li
Huan Liu
LRM
24
20
0
08 Nov 2023
Noise-Robust Fine-Tuning of Pretrained Language Models via External
  Guidance
Noise-Robust Fine-Tuning of Pretrained Language Models via External Guidance
Song Wang
Zhen Tan
Ruocheng Guo
Jundong Li
NoLa
6
20
0
02 Nov 2023
Label Noise: Correcting a Correction
Label Noise: Correcting a Correction
William Toner
Amos Storkey
NoLa
15
0
0
24 Jul 2023
Boundary-weighted logit consistency improves calibration of segmentation
  networks
Boundary-weighted logit consistency improves calibration of segmentation networks
Neerav Karani
Neel Dey
Polina Golland
17
3
0
16 Jul 2023
Leveraging an Alignment Set in Tackling Instance-Dependent Label Noise
Leveraging an Alignment Set in Tackling Instance-Dependent Label Noise
Donna Tjandra
Jenna Wiens
NoLa
22
3
0
10 Jul 2023
The Representation Jensen-Shannon Divergence
The Representation Jensen-Shannon Divergence
J. Hoyos-Osorio
Santiago Posso-Murillo
L. S. Giraldo
37
6
0
25 May 2023
Logistic-Normal Likelihoods for Heteroscedastic Label Noise
Logistic-Normal Likelihoods for Heteroscedastic Label Noise
Erik Englesson
Amir Mehrpanah
Hossein Azizpour
NoLa
16
1
0
06 Apr 2023
Dynamics-Aware Loss for Learning with Label Noise
Dynamics-Aware Loss for Learning with Label Noise
Xiu-Chuan Li
Xiaobo Xia
Fei Zhu
Tongliang Liu
Xu-Yao Zhang
Cheng-Lin Liu
NoLa
AI4CE
27
6
0
21 Mar 2023
Smooth and Stepwise Self-Distillation for Object Detection
Smooth and Stepwise Self-Distillation for Object Detection
Jieren Deng
Xiaoxia Zhou
Hao Tian
Zhihong Pan
Derek Aguiar
ObjD
17
0
0
09 Mar 2023
Generalized Semantic Segmentation by Self-Supervised Source Domain
  Projection and Multi-Level Contrastive Learning
Generalized Semantic Segmentation by Self-Supervised Source Domain Projection and Multi-Level Contrastive Learning
Liwei Yang
Xiang Gu
Jian Sun
26
12
0
03 Mar 2023
When Source-Free Domain Adaptation Meets Learning with Noisy Labels
When Source-Free Domain Adaptation Meets Learning with Noisy Labels
L. Yi
Gezheng Xu
Pengcheng Xu
Jiaqi Li
Ruizhi Pu
Charles X. Ling
A. McLeod
Boyu Wang
21
39
0
31 Jan 2023
Improve Noise Tolerance of Robust Loss via Noise-Awareness
Improve Noise Tolerance of Robust Loss via Noise-Awareness
Kehui Ding
Jun Shu
Deyu Meng
Zongben Xu
NoLa
17
5
0
18 Jan 2023
Class Prototype-based Cleaner for Label Noise Learning
Class Prototype-based Cleaner for Label Noise Learning
Jingjia Huang
Yuanqi Chen
Jiashi Feng
Xinglong Wu
NoLa
SSL
16
0
0
21 Dec 2022
SoftCTC -- Semi-Supervised Learning for Text Recognition using Soft
  Pseudo-Labels
SoftCTC -- Semi-Supervised Learning for Text Recognition using Soft Pseudo-Labels
M. Kišš
Michal Hradiš
Karel Beneš
Petr Buchal
Michal Kula
55
4
0
05 Dec 2022
Split-PU: Hardness-aware Training Strategy for Positive-Unlabeled
  Learning
Split-PU: Hardness-aware Training Strategy for Positive-Unlabeled Learning
C. Xu
Chen Liu
Siqian Yang
Yabiao Wang
Shijie Zhang
Lijie Jia
Yanwei Fu
8
5
0
30 Nov 2022
Dynamic Loss For Robust Learning
Dynamic Loss For Robust Learning
Shenwang Jiang
Jianan Li
Jizhou Zhang
Ying Wang
Tingfa Xu
NoLa
OOD
23
6
0
22 Nov 2022
Learning Algorithm Generalization Error Bounds via Auxiliary
  Distributions
Learning Algorithm Generalization Error Bounds via Auxiliary Distributions
Gholamali Aminian
Saeed Masiha
Laura Toni
M. Rodrigues
14
7
0
02 Oct 2022
CTRL: Clustering Training Losses for Label Error Detection
CTRL: Clustering Training Losses for Label Error Detection
C. Yue
N. Jha
NoLa
36
13
0
17 Aug 2022
Maximising the Utility of Validation Sets for Imbalanced Noisy-label
  Meta-learning
Maximising the Utility of Validation Sets for Imbalanced Noisy-label Meta-learning
D. Hoang
Cuong C. Nguyen
Cuong Nguyen anh Belagiannis Vasileios
G. Carneiro
13
2
0
17 Aug 2022
Study of Encoder-Decoder Architectures for Code-Mix Search Query
  Translation
Study of Encoder-Decoder Architectures for Code-Mix Search Query Translation
Mandar M. Kulkarni
Soumya Chennabasavaraj
Nikesh Garera
11
3
0
07 Aug 2022
Robust Fine-Tuning of Deep Neural Networks with Hessian-based
  Generalization Guarantees
Robust Fine-Tuning of Deep Neural Networks with Hessian-based Generalization Guarantees
Haotian Ju
Dongyue Li
Hongyang R. Zhang
35
28
0
06 Jun 2022
BoMD: Bag of Multi-label Descriptors for Noisy Chest X-ray
  Classification
BoMD: Bag of Multi-label Descriptors for Noisy Chest X-ray Classification
Yuanhong Chen
Fengbei Liu
Hu Wang
Chong Wang
Yu Tian
Yuyuan Liu
G. Carneiro
NoLa
21
8
0
03 Mar 2022
Learning with Neighbor Consistency for Noisy Labels
Learning with Neighbor Consistency for Noisy Labels
Ahmet Iscen
Jack Valmadre
Anurag Arnab
Cordelia Schmid
NoLa
20
75
0
04 Feb 2022
Certifying Out-of-Domain Generalization for Blackbox Functions
Certifying Out-of-Domain Generalization for Blackbox Functions
Maurice Weber
Linyi Li
Boxin Wang
Zhikuan Zhao
Bo-wen Li
Ce Zhang
OOD
21
14
0
03 Feb 2022
NoisyMix: Boosting Model Robustness to Common Corruptions
NoisyMix: Boosting Model Robustness to Common Corruptions
N. Benjamin Erichson
S. H. Lim
Winnie Xu
Francisco Utrera
Ziang Cao
Michael W. Mahoney
19
17
0
02 Feb 2022
Label Distributionally Robust Losses for Multi-class Classification:
  Consistency, Robustness and Adaptivity
Label Distributionally Robust Losses for Multi-class Classification: Consistency, Robustness and Adaptivity
Dixian Zhu
Yiming Ying
Tianbao Yang
27
9
0
30 Dec 2021
Graph Kernel Neural Networks
Graph Kernel Neural Networks
Luca Cosmo
G. Minello
Alessandro Bicciato
M. Bronstein
Emanuele Rodolà
Luca Rossi
A. Torsello
GNN
25
20
0
14 Dec 2021
CoDiM: Learning with Noisy Labels via Contrastive Semi-Supervised
  Learning
CoDiM: Learning with Noisy Labels via Contrastive Semi-Supervised Learning
Xin Zhang
Zixuan Liu
Kaiwen Xiao
Tian Shen
Junzhou Huang
Wei Yang
Dimitris Samaras
Xiao Han
NoLa
39
4
0
23 Nov 2021
Consistency Regularization Can Improve Robustness to Label Noise
Consistency Regularization Can Improve Robustness to Label Noise
Erik Englesson
Hossein Azizpour
NoLa
86
20
0
04 Oct 2021
Does Adversarial Oversampling Help us?
Does Adversarial Oversampling Help us?
T. Dam
Md Meftahul Ferdaus
S. Anavatti
Senthilnath Jayavelu
H. Abbass
14
8
0
20 Aug 2021
To Smooth or Not? When Label Smoothing Meets Noisy Labels
To Smooth or Not? When Label Smoothing Meets Noisy Labels
Jiaheng Wei
Hangyu Liu
Tongliang Liu
Gang Niu
Masashi Sugiyama
Yang Liu
NoLa
32
69
0
08 Jun 2021
1