ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2105.06987
  4. Cited By
Scaling Ensemble Distribution Distillation to Many Classes with Proxy
  Targets

Scaling Ensemble Distribution Distillation to Many Classes with Proxy Targets

14 May 2021
Max Ryabinin
A. Malinin
Mark J. F. Gales
    UQCV
ArXivPDFHTML

Papers citing "Scaling Ensemble Distribution Distillation to Many Classes with Proxy Targets"

6 / 6 papers shown
Title
Accuracy-Preserving Calibration via Statistical Modeling on Probability Simplex
Accuracy-Preserving Calibration via Statistical Modeling on Probability Simplex
Yasushi Esaki
Akihiro Nakamura
Keisuke Kawano
Ryoko Tokuhisa
Takuro Kutsuna
38
0
0
21 Feb 2024
Shifts 2.0: Extending The Dataset of Real Distributional Shifts
Shifts 2.0: Extending The Dataset of Real Distributional Shifts
A. Malinin
A. Athanasopoulos
M. Barakovic
Meritxell Bach Cuadra
Mark J. F. Gales
...
Francesco La Rosa
Eli Sivena
V. Tsarsitalidis
Efi Tsompopoulou
E. Volf
OOD
22
28
0
30 Jun 2022
Self-Distribution Distillation: Efficient Uncertainty Estimation
Self-Distribution Distillation: Efficient Uncertainty Estimation
Yassir Fathullah
Mark J. F. Gales
UQCV
14
11
0
15 Mar 2022
Uncertainty Measures in Neural Belief Tracking and the Effects on
  Dialogue Policy Performance
Uncertainty Measures in Neural Belief Tracking and the Effects on Dialogue Policy Performance
Carel van Niekerk
A. Malinin
Christian Geishauser
Michael Heck
Hsien-chin Lin
Nurul Lubis
Shutong Feng
Milica Gavsić
18
9
0
09 Sep 2021
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
270
5,660
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
279
9,136
0
06 Jun 2015
1