ResearchTrend.AI
  • Papers
  • Communities
  • Organizations
  • Events
  • Blog
  • Pricing
  • Feedback
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2105.13136
  4. Cited By
A framework for data-driven solution and parameter estimation of PDEs
  using conditional generative adversarial networks

A framework for data-driven solution and parameter estimation of PDEs using conditional generative adversarial networks

27 May 2021
T. Kadeethum
Daniel O’Malley
J. Fuhg
Youngsoo Choi
Jonghyun Lee
Hari S. Viswanathan
N. Bouklas
    AI4CE
ArXiv (abs)PDFHTML

Papers citing "A framework for data-driven solution and parameter estimation of PDEs using conditional generative adversarial networks"

25 / 25 papers shown
Title
Deep operator network for surrogate modeling of poroelasticity with random permeability fields
Deep operator network for surrogate modeling of poroelasticity with random permeability fields
Sangjoon Park
Yeonjong Shin
Jinhyun Choo
AI4CE
0
0
0
15 Sep 2025
System stabilization with policy optimization on unstable latent
  manifolds
System stabilization with policy optimization on unstable latent manifolds
Steffen W. R. Werner
Benjamin Peherstorfer
83
2
0
08 Jul 2024
Efficient machine-learning surrogates for large-scale geological carbon
  and energy storage
Efficient machine-learning surrogates for large-scale geological carbon and energy storage
T. Kadeethum
Stephen J Verzi
Hongkyu Yoon
AI4CE
78
2
0
11 Oct 2023
Progressive reduced order modeling: empowering data-driven modeling with
  selective knowledge transfer
Progressive reduced order modeling: empowering data-driven modeling with selective knowledge transfer
T. Kadeethum
Daniel O’Malley
Youngsoo Choi
Hari S. Viswanathan
Hongkyu Yoon
AI4CE
91
1
0
04 Oct 2023
Subsurface Characterization using Ensemble-based Approaches with Deep
  Generative Models
Subsurface Characterization using Ensemble-based Approaches with Deep Generative Models
Jichao Bao
H. Yoon
Jonghyun Lee
79
0
0
02 Oct 2023
Data-Driven Modeling of an Unsaturated Bentonite Buffer Model Test Under
  High Temperatures Using an Enhanced Axisymmetric Reproducing Kernel Particle
  Method
Data-Driven Modeling of an Unsaturated Bentonite Buffer Model Test Under High Temperatures Using an Enhanced Axisymmetric Reproducing Kernel Particle Method
Jonghyuk Baek
Yanran Wang
Xiaolong He
Yu Lu
J. McCartney
J. S. Chen
82
2
0
24 Sep 2023
Generative Adversarial Reduced Order Modelling
Generative Adversarial Reduced Order Modelling
Dario Coscia
N. Demo
G. Rozza
GANAI4CE
195
8
0
25 May 2023
Deep Operator Learning Lessens the Curse of Dimensionality for PDEs
Deep Operator Learning Lessens the Curse of Dimensionality for PDEs
Ke Chen
Chunmei Wang
Haizhao Yang
AI4CE
110
15
0
28 Jan 2023
Gaussian process regression and conditional Karhunen-Loéve models
  for data assimilation in inverse problems
Gaussian process regression and conditional Karhunen-Loéve models for data assimilation in inverse problems
Y. Yeung
D. Barajas-Solano
A. Tartakovsky
75
1
0
26 Jan 2023
A generalized machine learning framework for brittle crack problems
  using transfer learning and graph neural networks
A generalized machine learning framework for brittle crack problems using transfer learning and graph neural networks
Roberto Perera
V. Agrawal
AI4CE
51
12
0
22 Nov 2022
Conditional Generative Models for Simulation of EMG During Naturalistic
  Movements
Conditional Generative Models for Simulation of EMG During Naturalistic Movements
Shihan Ma
A. Clarke
Kostiantyn Maksymenko
Samuel Deslauriers-Gauthier
X. Sheng
Xiangyang Zhu
D. Farina
132
7
0
03 Nov 2022
Partial Differential Equations Meet Deep Neural Networks: A Survey
Partial Differential Equations Meet Deep Neural Networks: A Survey
Shudong Huang
Wentao Feng
Chenwei Tang
Jiancheng Lv
AI4CEAIMat
114
25
0
27 Oct 2022
Predictive Scale-Bridging Simulations through Active Learning
Predictive Scale-Bridging Simulations through Active Learning
S. Karra
Mohamed Mehana
Nicholas Lubbers
Yu Chen
A. Diaw
...
Christoph Junghans
Q. Kang
Daniel Livescu
T. Germann
Hari S. Viswanathan
AI4CE
74
3
0
20 Sep 2022
Thermodynamically Consistent Machine-Learned Internal State Variable
  Approach for Data-Driven Modeling of Path-Dependent Materials
Thermodynamically Consistent Machine-Learned Internal State Variable Approach for Data-Driven Modeling of Path-Dependent Materials
Xiaolong He
Jiun-Shyan Chen
AI4CE
124
52
0
01 May 2022
gLaSDI: Parametric Physics-informed Greedy Latent Space Dynamics
  Identification
gLaSDI: Parametric Physics-informed Greedy Latent Space Dynamics Identification
Xiaolong He
Youngsoo Choi
William D. Fries
Jonathan Belof
Jiun-Shyan Chen
AI4CE
74
44
0
26 Apr 2022
The efficacy and generalizability of conditional GANs for posterior
  inference in physics-based inverse problems
The efficacy and generalizability of conditional GANs for posterior inference in physics-based inverse problems
Deep Ray
Harisankar Ramaswamy
Dhruv V. Patel
Assad A. Oberai
CMLAI4CE
103
21
0
15 Feb 2022
An AI-based Domain-Decomposition Non-Intrusive Reduced-Order Model for
  Extended Domains applied to Multiphase Flow in Pipes
An AI-based Domain-Decomposition Non-Intrusive Reduced-Order Model for Extended Domains applied to Multiphase Flow in Pipes
Claire E. Heaney
Zef Wolffs
Jón Atli Tómasson
L. Kahouadji
P. Salinas
A. Nicolle
Omar K. Matar
Ionel M. Navon
N. Srinil
Christopher C. Pain
AI4CE
119
25
0
13 Feb 2022
Reduced order modeling for flow and transport problems with Barlow Twins
  self-supervised learning
Reduced order modeling for flow and transport problems with Barlow Twins self-supervised learning
T. Kadeethum
F. Ballarin
Daniel O’Malley
Youngsoo Choi
N. Bouklas
H. Yoon
AI4CE
96
19
0
11 Feb 2022
Machine Learning in Heterogeneous Porous Materials
Machine Learning in Heterogeneous Porous Materials
Martha DÉli
H. Deng
Cedric G. Fraces
K. Garikipati
L. Graham‐Brady
...
H. Tchelepi
B. Važić
Hari S. Viswanathan
H. Yoon
P. Zarzycki
AI4CE
100
10
0
04 Feb 2022
Uncertainty quantification and inverse modeling for subsurface flow in
  3D heterogeneous formations using a theory-guided convolutional
  encoder-decoder network
Uncertainty quantification and inverse modeling for subsurface flow in 3D heterogeneous formations using a theory-guided convolutional encoder-decoder network
Rui Xu
Dongxiao Zhang
Nanzhe Wang
AI4CE
116
17
0
14 Nov 2021
Physics-Informed Machine Learning Method for Large-Scale Data
  Assimilation Problems
Physics-Informed Machine Learning Method for Large-Scale Data Assimilation Problems
Y. Yeung
D. Barajas-Solano
A. Tartakovsky
AI4CE
112
20
0
30 Jul 2021
Non-intrusive reduced order modeling of natural convection in porous
  media using convolutional autoencoders: comparison with linear subspace
  techniques
Non-intrusive reduced order modeling of natural convection in porous media using convolutional autoencoders: comparison with linear subspace techniques
T. Kadeethum
F. Ballarin
Y. Cho
Daniel O’Malley
H. Yoon
N. Bouklas
AI4CE
98
64
0
23 Jul 2021
Interval and fuzzy physics-informed neural networks for uncertain fields
Interval and fuzzy physics-informed neural networks for uncertain fields
J. Fuhg
Ioannis Kalogeris
A. Fau
N. Bouklas
AI4CE
114
21
0
18 Jun 2021
Generative Network-Based Reduced-Order Model for Prediction, Data
  Assimilation and Uncertainty Quantification
Generative Network-Based Reduced-Order Model for Prediction, Data Assimilation and Uncertainty Quantification
Vinicius L. S. Silva
Claire E. Heaney
N. Nenov
Christopher C. Pain
AI4CE
82
3
0
28 May 2021
Data Assimilation Predictive GAN (DA-PredGAN): applied to determine the
  spread of COVID-19
Data Assimilation Predictive GAN (DA-PredGAN): applied to determine the spread of COVID-19
Vinicius L. S. Silva
Claire E. Heaney
Yaqi Li
Christopher C. Pain
AI4CE
89
23
0
17 May 2021
1