ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2105.14024
  4. Cited By
Near-Optimal Multi-Perturbation Experimental Design for Causal Structure
  Learning
v1v2 (latest)

Near-Optimal Multi-Perturbation Experimental Design for Causal Structure Learning

28 May 2021
Scott Sussex
Andreas Krause
Caroline Uhler
    CML
ArXiv (abs)PDFHTML

Papers citing "Near-Optimal Multi-Perturbation Experimental Design for Causal Structure Learning"

15 / 15 papers shown
Title
Data Filtering for Genetic Perturbation Prediction
Data Filtering for Genetic Perturbation Prediction
G. Panagopoulos
J. Lutzeyer
Sofiane Ennadir
Michalis Vazirgiannis
Jun Pang
502
0
0
01 Jul 2025
When Selection Meets Intervention: Additional Complexities in Causal Discovery
Haoyue Dai
Ignavier Ng
Jianle Sun
Zeyu Tang
Gongxu Luo
Xinshuai Dong
Peter Spirtes
Kun Zhang
CML
116
0
0
10 Mar 2025
No Foundations without Foundations -- Why semi-mechanistic models are essential for regulatory biology
No Foundations without Foundations -- Why semi-mechanistic models are essential for regulatory biology
Luka Kovacevic
Thomas Gaudelet
James Opzoomer
Hagen Triendl
John Whittaker
Caroline Uhler
Lindsay Edwards
J. Taylor-King
AI4CE
102
0
0
31 Jan 2025
Simulation-based Benchmarking for Causal Structure Learning in Gene
  Perturbation Experiments
Simulation-based Benchmarking for Causal Structure Learning in Gene Perturbation Experiments
Luka Kovacevic
Izzy Newsham
Sach Mukherjee
John Whittaker
CML
52
2
0
08 Jul 2024
Amortized Active Causal Induction with Deep Reinforcement Learning
Amortized Active Causal Induction with Deep Reinforcement Learning
Yashas Annadani
P. Tigas
Stefan Bauer
Adam Foster
78
1
0
26 May 2024
Deep Submodular Peripteral Networks
Deep Submodular Peripteral Networks
Gantavya Bhatt
Arnav M. Das
Jeff Bilmes
87
1
0
13 Mar 2024
Finding Counterfactually Optimal Action Sequences in Continuous State
  Spaces
Finding Counterfactually Optimal Action Sequences in Continuous State Spaces
Stratis Tsirtsis
Manuel Gomez Rodriguez
CMLOffRL
111
11
0
06 Jun 2023
Differentiable Multi-Target Causal Bayesian Experimental Design
Differentiable Multi-Target Causal Bayesian Experimental Design
Yashas Annadani
P. Tigas
Desi R. Ivanova
Andrew Jesson
Y. Gal
Adam Foster
Stefan Bauer
BDLCML
80
13
0
21 Feb 2023
Sequential Underspecified Instrument Selection for Cause-Effect
  Estimation
Sequential Underspecified Instrument Selection for Cause-Effect Estimation
Elisabeth Ailer
Jason S. Hartford
Niki Kilbertus
CML
80
4
0
11 Feb 2023
Active Learning for Optimal Intervention Design in Causal Models
Active Learning for Optimal Intervention Design in Causal Models
Jiaqi Zhang
Louis V. Cammarata
C. Squires
T. Sapsis
Caroline Uhler
CML
109
28
0
10 Sep 2022
Neural Design for Genetic Perturbation Experiments
Neural Design for Genetic Perturbation Experiments
Aldo Pacchiano
Drausin Wulsin
Robert A. Barton
L. Voloch
80
5
0
26 Jul 2022
Active Bayesian Causal Inference
Active Bayesian Causal Inference
Christian Toth
Lars Lorch
Christian Knoll
Andreas Krause
Franz Pernkopf
Robert Peharz
Julius von Kügelgen
83
27
0
04 Jun 2022
Causal Structure Learning: a Combinatorial Perspective
Causal Structure Learning: a Combinatorial Perspective
C. Squires
Caroline Uhler
CML
120
47
0
02 Jun 2022
Interventions, Where and How? Experimental Design for Causal Models at
  Scale
Interventions, Where and How? Experimental Design for Causal Models at Scale
P. Tigas
Yashas Annadani
Andrew Jesson
Bernhard Schölkopf
Y. Gal
Stefan Bauer
CML
150
50
0
03 Mar 2022
Submodular Maximization in Clean Linear Time
Submodular Maximization in Clean Linear Time
Wenxin Li
Moran Feldman
Ehsan Kazemi
Amin Karbasi
59
23
0
16 Jun 2020
1