ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.00286
  4. Cited By
On Riemannian Optimization over Positive Definite Matrices with the
  Bures-Wasserstein Geometry

On Riemannian Optimization over Positive Definite Matrices with the Bures-Wasserstein Geometry

1 June 2021
Andi Han
Bamdev Mishra
Pratik Jawanpuria
Junbin Gao
ArXivPDFHTML

Papers citing "On Riemannian Optimization over Positive Definite Matrices with the Bures-Wasserstein Geometry"

10 / 10 papers shown
Title
Spectral-factorized Positive-definite Curvature Learning for NN Training
Spectral-factorized Positive-definite Curvature Learning for NN Training
Wu Lin
Felix Dangel
Runa Eschenhagen
Juhan Bae
Richard E. Turner
Roger B. Grosse
47
0
0
10 Feb 2025
On Barycenter Computation: Semi-Unbalanced Optimal Transport-based
  Method on Gaussians
On Barycenter Computation: Semi-Unbalanced Optimal Transport-based Method on Gaussians
Ngoc-Hai Nguyen
Dung D. Le
Hoang Nguyen
Tung Pham
Nhat Ho
OT
42
1
0
10 Oct 2024
The Fisher-Rao geometry of CES distributions
The Fisher-Rao geometry of CES distributions
Florent Bouchard
A. Breloy
Antoine Collas
Alexandre Renaux
G. Ginolhac
24
5
0
02 Oct 2023
Wasserstein Gradient Flows for Optimizing Gaussian Mixture Policies
Wasserstein Gradient Flows for Optimizing Gaussian Mixture Policies
Hanna Ziesche
Leonel Rozo
26
5
0
17 May 2023
Forward-backward Gaussian variational inference via JKO in the
  Bures-Wasserstein Space
Forward-backward Gaussian variational inference via JKO in the Bures-Wasserstein Space
Michael Diao
Krishnakumar Balasubramanian
Sinho Chewi
Adil Salim
BDL
32
21
0
10 Apr 2023
Faster Riemannian Newton-type Optimization by Subsampling and Cubic
  Regularization
Faster Riemannian Newton-type Optimization by Subsampling and Cubic Regularization
Yian Deng
Tingting Mu
21
1
0
22 Feb 2023
A Survey of Geometric Optimization for Deep Learning: From Euclidean
  Space to Riemannian Manifold
A Survey of Geometric Optimization for Deep Learning: From Euclidean Space to Riemannian Manifold
Yanhong Fei
Xian Wei
Yingjie Liu
Zhengyu Li
Mingsong Chen
28
6
0
16 Feb 2023
Riemannian Optimization for Variance Estimation in Linear Mixed Models
Riemannian Optimization for Variance Estimation in Linear Mixed Models
L. Sembach
J. P. Burgard
Volker Schulz
4
0
0
18 Dec 2022
Manifold Gaussian Variational Bayes on the Precision Matrix
Manifold Gaussian Variational Bayes on the Precision Matrix
M. Magris
M. Shabani
Alexandros Iosifidis
37
2
0
26 Oct 2022
Riemannian Hamiltonian methods for min-max optimization on manifolds
Riemannian Hamiltonian methods for min-max optimization on manifolds
Andi Han
Bamdev Mishra
Pratik Jawanpuria
Pawan Kumar
Junbin Gao
38
17
0
25 Apr 2022
1