Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2106.00546
Cited By
Efficient Explanations With Relevant Sets
1 June 2021
Yacine Izza
Alexey Ignatiev
Nina Narodytska
Martin C. Cooper
Sasha Rubin
FAtt
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Efficient Explanations With Relevant Sets"
20 / 20 papers shown
Title
On Guaranteed Optimal Robust Explanations for NLP Models
Emanuele La Malfa
A. Zbrzezny
Rhiannon Michelmore
Nicola Paoletti
Marta Z. Kwiatkowska
FAtt
29
47
0
08 May 2021
On the Computational Intelligibility of Boolean Classifiers
Gilles Audemard
S. Bellart
Louenas Bounia
F. Koriche
Jean-Marie Lagniez
Pierre Marquis
29
57
0
13 Apr 2021
Model Interpretability through the Lens of Computational Complexity
Pablo Barceló
Mikaël Monet
Jorge A. Pérez
Bernardo Subercaseaux
150
96
0
23 Oct 2020
On Explaining Decision Trees
Yacine Izza
Alexey Ignatiev
Sasha Rubin
FAtt
36
86
0
21 Oct 2020
On The Reasons Behind Decisions
Adnan Darwiche
Auguste Hirth
FaML
25
145
0
21 Feb 2020
"How do I fool you?": Manipulating User Trust via Misleading Black Box Explanations
Himabindu Lakkaraju
Osbert Bastani
30
251
0
15 Nov 2019
Fooling LIME and SHAP: Adversarial Attacks on Post hoc Explanation Methods
Dylan Slack
Sophie Hilgard
Emily Jia
Sameer Singh
Himabindu Lakkaraju
FAtt
AAML
MLAU
37
809
0
06 Nov 2019
Can I Trust the Explainer? Verifying Post-hoc Explanatory Methods
Oana-Maria Camburu
Eleonora Giunchiglia
Jakob N. Foerster
Thomas Lukasiewicz
Phil Blunsom
FAtt
AAML
34
61
0
04 Oct 2019
What to Expect of Classifiers? Reasoning about Logistic Regression with Missing Features
Pasha Khosravi
Yitao Liang
YooJung Choi
Guy Van den Broeck
19
44
0
05 Mar 2019
Abduction-Based Explanations for Machine Learning Models
Alexey Ignatiev
Nina Narodytska
Sasha Rubin
FAtt
27
223
0
26 Nov 2018
A Symbolic Approach to Explaining Bayesian Network Classifiers
Andy Shih
Arthur Choi
Adnan Darwiche
FAtt
44
241
0
09 May 2018
The Challenge of Crafting Intelligible Intelligence
Daniel S. Weld
Gagan Bansal
26
243
0
09 Mar 2018
A Survey Of Methods For Explaining Black Box Models
Riccardo Guidotti
A. Monreale
Salvatore Ruggieri
Franco Turini
D. Pedreschi
F. Giannotti
XAI
58
3,922
0
06 Feb 2018
Methods for Interpreting and Understanding Deep Neural Networks
G. Montavon
Wojciech Samek
K. Müller
FaML
250
2,248
0
24 Jun 2017
Explanation in Artificial Intelligence: Insights from the Social Sciences
Tim Miller
XAI
195
4,229
0
22 Jun 2017
A Unified Approach to Interpreting Model Predictions
Scott M. Lundberg
Su-In Lee
FAtt
36
21,459
0
22 May 2017
PMLB: A Large Benchmark Suite for Machine Learning Evaluation and Comparison
Randal S. Olson
William La Cava
Patryk Orzechowski
Ryan J. Urbanowicz
J. Moore
26
377
0
01 Mar 2017
The Mythos of Model Interpretability
Zachary Chase Lipton
FaML
37
3,672
0
10 Jun 2016
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
100
16,765
0
16 Feb 2016
A Knowledge Compilation Map
Adnan Darwiche
Pierre Marquis
38
948
0
09 Jun 2011
1