ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.00546
  4. Cited By
Efficient Explanations With Relevant Sets

Efficient Explanations With Relevant Sets

1 June 2021
Yacine Izza
Alexey Ignatiev
Nina Narodytska
Martin C. Cooper
Sasha Rubin
    FAtt
ArXivPDFHTML

Papers citing "Efficient Explanations With Relevant Sets"

20 / 20 papers shown
Title
On Guaranteed Optimal Robust Explanations for NLP Models
On Guaranteed Optimal Robust Explanations for NLP Models
Emanuele La Malfa
A. Zbrzezny
Rhiannon Michelmore
Nicola Paoletti
Marta Z. Kwiatkowska
FAtt
29
47
0
08 May 2021
On the Computational Intelligibility of Boolean Classifiers
On the Computational Intelligibility of Boolean Classifiers
Gilles Audemard
S. Bellart
Louenas Bounia
F. Koriche
Jean-Marie Lagniez
Pierre Marquis
29
57
0
13 Apr 2021
Model Interpretability through the Lens of Computational Complexity
Model Interpretability through the Lens of Computational Complexity
Pablo Barceló
Mikaël Monet
Jorge A. Pérez
Bernardo Subercaseaux
150
96
0
23 Oct 2020
On Explaining Decision Trees
On Explaining Decision Trees
Yacine Izza
Alexey Ignatiev
Sasha Rubin
FAtt
36
86
0
21 Oct 2020
On The Reasons Behind Decisions
On The Reasons Behind Decisions
Adnan Darwiche
Auguste Hirth
FaML
25
145
0
21 Feb 2020
"How do I fool you?": Manipulating User Trust via Misleading Black Box
  Explanations
"How do I fool you?": Manipulating User Trust via Misleading Black Box Explanations
Himabindu Lakkaraju
Osbert Bastani
30
251
0
15 Nov 2019
Fooling LIME and SHAP: Adversarial Attacks on Post hoc Explanation
  Methods
Fooling LIME and SHAP: Adversarial Attacks on Post hoc Explanation Methods
Dylan Slack
Sophie Hilgard
Emily Jia
Sameer Singh
Himabindu Lakkaraju
FAtt
AAML
MLAU
37
809
0
06 Nov 2019
Can I Trust the Explainer? Verifying Post-hoc Explanatory Methods
Can I Trust the Explainer? Verifying Post-hoc Explanatory Methods
Oana-Maria Camburu
Eleonora Giunchiglia
Jakob N. Foerster
Thomas Lukasiewicz
Phil Blunsom
FAtt
AAML
34
61
0
04 Oct 2019
What to Expect of Classifiers? Reasoning about Logistic Regression with
  Missing Features
What to Expect of Classifiers? Reasoning about Logistic Regression with Missing Features
Pasha Khosravi
Yitao Liang
YooJung Choi
Guy Van den Broeck
19
44
0
05 Mar 2019
Abduction-Based Explanations for Machine Learning Models
Abduction-Based Explanations for Machine Learning Models
Alexey Ignatiev
Nina Narodytska
Sasha Rubin
FAtt
27
223
0
26 Nov 2018
A Symbolic Approach to Explaining Bayesian Network Classifiers
A Symbolic Approach to Explaining Bayesian Network Classifiers
Andy Shih
Arthur Choi
Adnan Darwiche
FAtt
44
241
0
09 May 2018
The Challenge of Crafting Intelligible Intelligence
The Challenge of Crafting Intelligible Intelligence
Daniel S. Weld
Gagan Bansal
26
243
0
09 Mar 2018
A Survey Of Methods For Explaining Black Box Models
A Survey Of Methods For Explaining Black Box Models
Riccardo Guidotti
A. Monreale
Salvatore Ruggieri
Franco Turini
D. Pedreschi
F. Giannotti
XAI
58
3,922
0
06 Feb 2018
Methods for Interpreting and Understanding Deep Neural Networks
Methods for Interpreting and Understanding Deep Neural Networks
G. Montavon
Wojciech Samek
K. Müller
FaML
250
2,248
0
24 Jun 2017
Explanation in Artificial Intelligence: Insights from the Social
  Sciences
Explanation in Artificial Intelligence: Insights from the Social Sciences
Tim Miller
XAI
195
4,229
0
22 Jun 2017
A Unified Approach to Interpreting Model Predictions
A Unified Approach to Interpreting Model Predictions
Scott M. Lundberg
Su-In Lee
FAtt
36
21,459
0
22 May 2017
PMLB: A Large Benchmark Suite for Machine Learning Evaluation and
  Comparison
PMLB: A Large Benchmark Suite for Machine Learning Evaluation and Comparison
Randal S. Olson
William La Cava
Patryk Orzechowski
Ryan J. Urbanowicz
J. Moore
26
377
0
01 Mar 2017
The Mythos of Model Interpretability
The Mythos of Model Interpretability
Zachary Chase Lipton
FaML
37
3,672
0
10 Jun 2016
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
100
16,765
0
16 Feb 2016
A Knowledge Compilation Map
A Knowledge Compilation Map
Adnan Darwiche
Pierre Marquis
38
948
0
09 Jun 2011
1