ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.02264
  4. Cited By
Tractable Regularization of Probabilistic Circuits

Tractable Regularization of Probabilistic Circuits

4 June 2021
Hoang Trung-Dung
Guy Van den Broeck
    TPM
ArXivPDFHTML

Papers citing "Tractable Regularization of Probabilistic Circuits"

9 / 9 papers shown
Title
Optimal Transport for Probabilistic Circuits
Optimal Transport for Probabilistic Circuits
Adrian Ciotinga
YooJung Choi
TPM
OT
52
0
0
16 Oct 2024
On the Relationship Between Monotone and Squared Probabilistic Circuits
On the Relationship Between Monotone and Squared Probabilistic Circuits
Benjie Wang
Guy Van den Broeck
TPM
47
5
0
01 Aug 2024
Scaling Continuous Latent Variable Models as Probabilistic Integral Circuits
Scaling Continuous Latent Variable Models as Probabilistic Integral Circuits
G. Gala
Cassio de Campos
Antonio Vergari
Erik Quaeghebeur
TPM
71
4
0
10 Jun 2024
A Tractable Inference Perspective of Offline RL
A Tractable Inference Perspective of Offline RL
Xuejie Liu
Hoang Trung-Dung
Guy Van den Broeck
Yitao Liang
OffRL
36
1
0
31 Oct 2023
Scaling Up Probabilistic Circuits by Latent Variable Distillation
Scaling Up Probabilistic Circuits by Latent Variable Distillation
Hoang Trung-Dung
Honghua Zhang
Guy Van den Broeck
TPM
25
25
0
10 Oct 2022
Continuous Mixtures of Tractable Probabilistic Models
Continuous Mixtures of Tractable Probabilistic Models
Alvaro H. C. Correia
G. Gala
Erik Quaeghebeur
Cassio de Campos
Robert Peharz
TPM
19
18
0
21 Sep 2022
Lossless Compression with Probabilistic Circuits
Lossless Compression with Probabilistic Circuits
Hoang Trung-Dung
Stephan Mandt
Guy Van den Broeck
TPM
21
21
0
23 Nov 2021
Solving Marginal MAP Exactly by Probabilistic Circuit Transformations
Solving Marginal MAP Exactly by Probabilistic Circuit Transformations
YooJung Choi
Tal Friedman
Guy Van den Broeck
TPM
30
11
0
08 Nov 2021
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
287
9,167
0
06 Jun 2015
1