Papers
Communities
Organizations
Events
Blog
Pricing
Feedback
Contact Sales
Search
Open menu
Home
Papers
2106.02674
Cited By
v1
v2 (latest)
Differentially Empirical Risk Minimization under the Fairness Lens
4 June 2021
Cuong Tran
My H. Dinh
Ferdinando Fioretto
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Differentially Empirical Risk Minimization under the Fairness Lens"
36 / 36 papers shown
Title
Mitigating Disparate Impact of Differentially Private Learning through Bounded Adaptive Clipping
Linzh Zhao
Aki Rehn
Mikko A. Heikkilä
Razane Tajeddine
Antti Honkela
135
0
0
02 Jun 2025
Private Rate-Constrained Optimization with Applications to Fair Learning
Mohammad Yaghini
Tudor Cebere
Michael Menart
A. Bellet
Nicolas Papernot
140
0
0
28 May 2025
Edge-Cloud Collaborative Computing on Distributed Intelligence and Model Optimization: A Survey
Jing Liu
Yao Du
Kun Yang
Yan Wang
Yan Wang
...
Zehua Wang
Yang Liu
Peng Sun
Azzedine Boukerche
Victor C.M. Leung
165
4
0
03 May 2025
Trustworthy Machine Learning via Memorization and the Granular Long-Tail: A Survey on Interactions, Tradeoffs, and Beyond
Qiongxiu Li
Xiaoyu Luo
Yiyi Chen
Johannes Bjerva
301
3
0
10 Mar 2025
Learning with Differentially Private (Sliced) Wasserstein Gradients
David Rodríguez-Vítores
Clément Lalanne
Jean-Michel Loubes
FedML
165
0
0
03 Feb 2025
SoK: What Makes Private Learning Unfair?
Kai Yao
Marc Juarez
114
0
0
24 Jan 2025
PFGuard: A Generative Framework with Privacy and Fairness Safeguards
Soyeon Kim
Yuji Roh
Geon Heo
Steven Euijong Whang
167
0
0
03 Oct 2024
Differentially Private Data Release on Graphs: Inefficiencies and Unfairness
Ferdinando Fioretto
Diptangshu Sen
Juba Ziani
91
1
0
08 Aug 2024
Differentially Private Clustered Federated Learning
Saber Malekmohammadi
Afaf Taik
G. Farnadi
FedML
125
3
0
29 May 2024
Privacy at a Price: Exploring its Dual Impact on AI Fairness
Mengmeng Yang
Ming Ding
Youyang Qu
Wei Ni
David B. Smith
Thierry Rakotoarivelo
70
1
0
15 Apr 2024
Differentially Private Fair Binary Classifications
Hrad Ghoukasian
S. Asoodeh
FaML
128
3
0
23 Feb 2024
Generalization Error of Graph Neural Networks in the Mean-field Regime
Gholamali Aminian
Yixuan He
Gesine Reinert
Lukasz Szpruch
Samuel N. Cohen
127
4
0
10 Feb 2024
Disparate Impact on Group Accuracy of Linearization for Private Inference
Saswat Das
Marco Romanelli
Ferdinando Fioretto
FedML
100
4
0
06 Feb 2024
On the Impact of Output Perturbation on Fairness in Binary Linear Classification
Vitalii Emelianov
Michael Perrot
FaML
114
0
0
05 Feb 2024
A Simple and Practical Method for Reducing the Disparate Impact of Differential Privacy
Lucas Rosenblatt
Julia Stoyanovich
Christopher Musco
77
3
0
18 Dec 2023
SoK: Unintended Interactions among Machine Learning Defenses and Risks
Vasisht Duddu
S. Szyller
Nadarajah Asokan
AAML
203
4
0
07 Dec 2023
On The Fairness Impacts of Hardware Selection in Machine Learning
Sree Harsha Nelaturu
Nishaanth Kanna Ravichandran
Cuong Tran
Sara Hooker
Ferdinando Fioretto
119
3
0
06 Dec 2023
Bias-Aware Minimisation: Understanding and Mitigating Estimator Bias in Private SGD
Moritz Knolle
R. Dorfman
Alexander Ziller
Daniel Rueckert
Georgios Kaissis
66
2
0
23 Aug 2023
Survey of Trustworthy AI: A Meta Decision of AI
Caesar Wu
Yuan-Fang Li
Pascal Bouvry
142
3
0
01 Jun 2023
FairDP: Certified Fairness with Differential Privacy
K. Tran
Ferdinando Fioretto
Issa M. Khalil
My T. Thai
Nhathai Phan
138
0
0
25 May 2023
On the Fairness Impacts of Private Ensembles Models
Cuong Tran
Ferdinando Fioretto
130
6
0
19 May 2023
Participatory Personalization in Classification
Hailey J James
Chirag Nagpal
Katherine A. Heller
Berk Ustun
111
5
0
08 Feb 2023
An Empirical Analysis of Fairness Notions under Differential Privacy
Anderson Santana de Oliveira
Caelin Kaplan
Khawla Mallat
Tanmay Chakraborty
FedML
116
8
0
06 Feb 2023
Fairness Increases Adversarial Vulnerability
Cuong Tran
Keyu Zhu
Ferdinando Fioretto
Pascal Van Hentenryck
97
7
0
21 Nov 2022
Differential Privacy has Bounded Impact on Fairness in Classification
Paul Mangold
Michaël Perrot
A. Bellet
Marc Tommasi
133
21
0
28 Oct 2022
Stochastic Differentially Private and Fair Learning
Andrew Lowy
Devansh Gupta
Meisam Razaviyayn
FaML
FedML
110
15
0
17 Oct 2022
A Closer Look at the Calibration of Differentially Private Learners
Hanlin Zhang
Xuechen Li
Prithviraj Sen
Salim Roukos
Tatsunori Hashimoto
123
3
0
15 Oct 2022
Fairness in Forecasting of Observations of Linear Dynamical Systems
Quan Zhou
Jakub Mareˇcek
Robert Shorten
AI4TS
191
5
0
12 Sep 2022
How Much User Context Do We Need? Privacy by Design in Mental Health NLP Application
Ramit Sawhney
A. Neerkaje
Ivan Habernal
Lucie Flek
116
4
0
05 Sep 2022
Disparate Impact in Differential Privacy from Gradient Misalignment
Maria S. Esipova
Atiyeh Ashari Ghomi
Yaqiao Luo
Jesse C. Cresswell
163
34
0
15 Jun 2022
How unfair is private learning ?
Amartya Sanyal
Yaxian Hu
Fanny Yang
FaML
FedML
136
24
0
08 Jun 2022
Pruning has a disparate impact on model accuracy
Cuong Tran
Ferdinando Fioretto
Jung-Eun Kim
Rakshit Naidu
145
41
0
26 May 2022
Pre-trained Perceptual Features Improve Differentially Private Image Generation
Fredrik Harder
Milad Jalali Asadabadi
Danica J. Sutherland
Mijung Park
192
31
0
25 May 2022
SF-PATE: Scalable, Fair, and Private Aggregation of Teacher Ensembles
Cuong Tran
Keyu Zhu
Ferdinando Fioretto
Pascal Van Hentenryck
95
12
0
11 Apr 2022
Differential Privacy and Fairness in Decisions and Learning Tasks: A Survey
Ferdinando Fioretto
Cuong Tran
Pascal Van Hentenryck
Keyu Zhu
FaML
105
67
0
16 Feb 2022
A Stochastic Optimization Framework for Fair Risk Minimization
Andrew Lowy
Sina Baharlouei
Rakesh Pavan
Meisam Razaviyayn
Ahmad Beirami
FaML
175
23
0
24 Feb 2021
1