ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.03831
  4. Cited By
Counterfactual Maximum Likelihood Estimation for Training Deep Networks
v1v2 (latest)

Counterfactual Maximum Likelihood Estimation for Training Deep Networks

7 June 2021
Xinyi Wang
Wenhu Chen
Michael Stephen Saxon
Wenjie Wang
    OODCMLBDL
ArXiv (abs)PDFHTML

Papers citing "Counterfactual Maximum Likelihood Estimation for Training Deep Networks"

5 / 5 papers shown
Title
See or Guess: Counterfactually Regularized Image Captioning
See or Guess: Counterfactually Regularized Image Captioning
Qian Cao
Xu Chen
Ruihua Song
Xiting Wang
Xinting Huang
Yuchen Ren
CML
87
1
0
29 Aug 2024
Benchmarks as Microscopes: A Call for Model Metrology
Benchmarks as Microscopes: A Call for Model Metrology
Michael Stephen Saxon
Ari Holtzman
Peter West
William Y. Wang
Naomi Saphra
109
13
0
22 Jul 2024
Implementing Deep Learning-Based Approaches for Article Summarization in
  Indian Languages
Implementing Deep Learning-Based Approaches for Article Summarization in Indian Languages
Rahul Tangsali
Aabha Pingle
Aditya Vyawahare
Isha Joshi
Raviraj Joshi
85
7
0
12 Dec 2022
Causal Balancing for Domain Generalization
Causal Balancing for Domain Generalization
Xinyi Wang
Michael Stephen Saxon
Jiachen Li
Hongyang R. Zhang
Kun Zhang
William Yang Wang
OODCML
106
23
0
10 Jun 2022
PECO: Examining Single Sentence Label Leakage in Natural Language
  Inference Datasets through Progressive Evaluation of Cluster Outliers
PECO: Examining Single Sentence Label Leakage in Natural Language Inference Datasets through Progressive Evaluation of Cluster Outliers
Michael Stephen Saxon
Xinyi Wang
Wenda Xu
William Yang Wang
97
9
0
16 Dec 2021
1