Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2106.04254
Cited By
v1
v2 (latest)
Coresets for Classification -- Simplified and Strengthened
8 June 2021
Tung Mai
Anup B. Rao
Cameron Musco
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Coresets for Classification -- Simplified and Strengthened"
25 / 25 papers shown
Title
Importance Sampling for Nonlinear Models
Prakash Palanivelu Rajmohan
Fred Roosta
58
0
0
18 May 2025
Near-Polynomially Competitive Active Logistic Regression
Yihan Zhou
Eric Price
Trung Nguyen
103
0
0
07 Mar 2025
Accurate Coresets for Latent Variable Models and Regularized Regression
Sanskar Ranjan
Supratim Shit
87
0
0
31 Dec 2024
The Space Complexity of Approximating Logistic Loss
Gregory Dexter
P. Drineas
Rajiv Khanna
100
1
0
03 Dec 2024
Sketchy Moment Matching: Toward Fast and Provable Data Selection for Finetuning
Yijun Dong
Hoang Phan
Xiang Pan
Qi Lei
150
6
0
08 Jul 2024
Turnstile
ℓ
p
\ell_p
ℓ
p
leverage score sampling with applications
Alexander Munteanu
Simon Omlor
67
2
0
01 Jun 2024
Optimal bounds for
ℓ
p
\ell_p
ℓ
p
sensitivity sampling via
ℓ
2
\ell_2
ℓ
2
augmentation
Alexander Munteanu
Simon Omlor
64
5
0
01 Jun 2024
Agnostic Active Learning of Single Index Models with Linear Sample Complexity
Aarshvi Gajjar
Wai Ming Tai
Xingyu Xu
Chinmay Hegde
Yi Li
Chris Musco
84
9
0
15 May 2024
Scalable Learning of Item Response Theory Models
Susanne Frick
Amer Krivosija
Alexander Munteanu
AI4Ed
53
4
0
01 Mar 2024
A Provably Accurate Randomized Sampling Algorithm for Logistic Regression
Agniva Chowdhury
Pradeep Ramuhalli
75
2
0
26 Feb 2024
How to Train Data-Efficient LLMs
Noveen Sachdeva
Benjamin Coleman
Wang-Cheng Kang
Jianmo Ni
Lichan Hong
Ed H. Chi
James Caverlee
Julian McAuley
D. Cheng
93
64
0
15 Feb 2024
Simple Weak Coresets for Non-Decomposable Classification Measures
Jayesh Malaviya
Anirban Dasgupta
Rachit Chhaya
123
0
0
15 Dec 2023
Computing Approximate
ℓ
p
\ell_p
ℓ
p
Sensitivities
Swati Padmanabhan
David P. Woodruff
Qiuyi Zhang
82
0
0
07 Nov 2023
Improved Active Learning via Dependent Leverage Score Sampling
Atsushi Shimizu
Xiaoou Cheng
Chris Musco
Jonathan Weare
FedML
59
6
0
08 Oct 2023
Optimal Sketching Bounds for Sparse Linear Regression
Tung Mai
Alexander Munteanu
Cameron Musco
Anup B. Rao
Chris Schwiegelshohn
David P. Woodruff
74
5
0
05 Apr 2023
Feature Space Sketching for Logistic Regression
Gregory Dexter
Rajiv Khanna
Jawad Raheel
P. Drineas
69
4
0
24 Mar 2023
Leveraging Importance Weights in Subset Selection
Gui Citovsky
Giulia DeSalvo
Sanjiv Kumar
Srikumar Ramalingam
Afshin Rostamizadeh
Yunjuan Wang
78
4
0
28 Jan 2023
A Coreset Learning Reality Check
Fred Lu
Edward Raff
James Holt
60
5
0
15 Jan 2023
Active Learning for Single Neuron Models with Lipschitz Non-Linearities
Aarshvi Gajjar
Chinmay Hegde
Christopher Musco
85
12
0
24 Oct 2022
Efficient NTK using Dimensionality Reduction
Nir Ailon
Supratim Shit
86
0
0
10 Oct 2022
Pruning Neural Networks via Coresets and Convex Geometry: Towards No Assumptions
M. Tukan
Loay Mualem
Alaa Maalouf
3DPC
78
23
0
18 Sep 2022
Online Lewis Weight Sampling
David P. Woodruff
T. Yasuda
64
21
0
17 Jul 2022
An Empirical Evaluation of
k
k
k
-Means Coresets
Chris Schwiegelshohn
Omar Ali Sheikh-Omar
52
11
0
03 Jul 2022
p
p
p
-Generalized Probit Regression and Scalable Maximum Likelihood Estimation via Sketching and Coresets
Alexander Munteanu
Simon Omlor
Christian Peters
42
11
0
25 Mar 2022
Generic Coreset for Scalable Learning of Monotonic Kernels: Logistic Regression, Sigmoid and more
Elad Tolochinsky
Ibrahim Jubran
Dan Feldman
CLL
136
17
0
21 Feb 2018
1