ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.05409
  4. Cited By
Zero Time Waste: Recycling Predictions in Early Exit Neural Networks

Zero Time Waste: Recycling Predictions in Early Exit Neural Networks

9 June 2021
Maciej Wołczyk
Bartosz Wójcik
Klaudia Bałazy
Igor T. Podolak
Jacek Tabor
Marek Śmieja
Tomasz Trzciñski
    AI4CE
ArXivPDFHTML

Papers citing "Zero Time Waste: Recycling Predictions in Early Exit Neural Networks"

15 / 15 papers shown
Title
Exploring Dynamic Transformer for Efficient Object Tracking
Exploring Dynamic Transformer for Efficient Object Tracking
Jiawen Zhu
Xin Chen
Haiwen Diao
Shuai Li
Jun-Yan He
Chenyang Li
Bin Luo
Dong Wang
Huchuan Lu
63
2
0
26 Mar 2024
On the Impact of Black-box Deployment Strategies for Edge AI on Latency and Model Performance
On the Impact of Black-box Deployment Strategies for Edge AI on Latency and Model Performance
Jaskirat Singh
Emad Fallahzadeh
Bram Adams
Ahmed E. Hassan
MQ
45
3
0
25 Mar 2024
Dynamic nsNet2: Efficient Deep Noise Suppression with Early Exiting
Dynamic nsNet2: Efficient Deep Noise Suppression with Early Exiting
Riccardo Miccini
Alaa Zniber
Clément Laroche
Tobias Piechowiak
Martin Schoeberl
Luca Pezzarossa
Ouassim Karrakchou
J. Sparsø
Mounir Ghogho
33
1
0
31 Aug 2023
Learning Task-preferred Inference Routes for Gradient De-conflict in Multi-output DNNs
Learning Task-preferred Inference Routes for Gradient De-conflict in Multi-output DNNs
Yi Sun
Xin Xu
Jian Li
Xiaochang Hu
Yifei Shi
L. Zeng
39
2
0
31 May 2023
Anticipate, Ensemble and Prune: Improving Convolutional Neural Networks
  via Aggregated Early Exits
Anticipate, Ensemble and Prune: Improving Convolutional Neural Networks via Aggregated Early Exits
Simone Sarti
Eugenio Lomurno
Matteo Matteucci
27
4
0
28 Jan 2023
Understanding the Robustness of Multi-Exit Models under Common
  Corruptions
Understanding the Robustness of Multi-Exit Models under Common Corruptions
Akshay Mehra
Skyler Seto
Navdeep Jaitly
B. Theobald
AAML
24
3
0
03 Dec 2022
Efficiently Controlling Multiple Risks with Pareto Testing
Efficiently Controlling Multiple Risks with Pareto Testing
Bracha Laufer-Goldshtein
Adam Fisch
Regina Barzilay
Tommi Jaakkola
38
16
0
14 Oct 2022
Predictive Exit: Prediction of Fine-Grained Early Exits for Computation-
  and Energy-Efficient Inference
Predictive Exit: Prediction of Fine-Grained Early Exits for Computation- and Energy-Efficient Inference
Xiangjie Li
Chen Lou
Zhengping Zhu
Yuchi Chen
Yingtao Shen
Yehan Ma
An Zou
27
21
0
09 Jun 2022
OccamNets: Mitigating Dataset Bias by Favoring Simpler Hypotheses
OccamNets: Mitigating Dataset Bias by Favoring Simpler Hypotheses
Robik Shrestha
Kushal Kafle
Christopher Kanan
CML
38
13
0
05 Apr 2022
Towards Disentangling Information Paths with Coded ResNeXt
Towards Disentangling Information Paths with Coded ResNeXt
Apostolos Avranas
Marios Kountouris
FAtt
32
1
0
10 Feb 2022
PluGeN: Multi-Label Conditional Generation From Pre-Trained Models
PluGeN: Multi-Label Conditional Generation From Pre-Trained Models
Maciej Wołczyk
Magdalena Proszewska
Lukasz Maziarka
Maciej Ziȩba
Patryk Wielopolski
Rafał Kurczab
Marek Śmieja
DRL
29
5
0
18 Sep 2021
Single-Layer Vision Transformers for More Accurate Early Exits with Less
  Overhead
Single-Layer Vision Transformers for More Accurate Early Exits with Less Overhead
Arian Bakhtiarnia
Qi Zhang
Alexandros Iosifidis
29
35
0
19 May 2021
Split Computing and Early Exiting for Deep Learning Applications: Survey
  and Research Challenges
Split Computing and Early Exiting for Deep Learning Applications: Survey and Research Challenges
Yoshitomo Matsubara
Marco Levorato
Francesco Restuccia
33
199
0
08 Mar 2021
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision
  Applications
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
Andrew G. Howard
Menglong Zhu
Bo Chen
Dmitry Kalenichenko
Weijun Wang
Tobias Weyand
M. Andreetto
Hartwig Adam
3DH
950
20,613
0
17 Apr 2017
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
278
5,695
0
05 Dec 2016
1